TY - JOUR
T1 - Coverage of whole proteome by structural genomics observed through protein homology modeling database
AU - Yura, Kei
AU - Yamaguchi, Akihiro
AU - Go, Mitiko
N1 - Funding Information:
Acknowledgements This work was supported by a Grant-in-Aid for Scientific Research on Priority Area (C), Genome Information Science from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.
PY - 2006/6
Y1 - 2006/6
N2 - We have been developing FAMSBASE, a protein homology-modeling database of whole ORFs predicted from genome sequences. The latest update of FAMSBASE ( http://daisy.nagahama-i-bio.ac.jp/Famsbase/ ), which is based on the protein three-dimensional (3D) structures released by November 2003, contains modeled 3D structures for 368,724 open reading frames (ORFs) derived from genomes of 276 species, namely 17 archaebacterial, 130 eubacterial, 18 eukaryotic and 111 phage genomes. Those 276 genomes are predicted to have 734,193 ORFs in total and the current FAMSBASE contains protein 3D structure of approximately 50% of the ORF products. However, cases that a modeled 3D structure covers the whole part of an ORF product are rare. When portion of an ORF with 3D structure is compared in three kingdoms of life, in archaebacteria and eubacteria, approximately 60% of the ORFs have modeled 3D structures covering almost the entire amino acid sequences, however, the percentage falls to about 30% in eukaryotes. When annual differences in the number of ORFs with modeled 3D structure are calculated, the fraction of modeled 3D structures of soluble protein for archaebacteria is increased by 5%, and that for eubacteria by 7% in the last 3 years. Assuming that this rate would be maintained and that determination of 3D structures for predicted disordered regions is unattainable, whole soluble protein model structures of prokaryotes without the putative disordered regions will be in hand within 15 years. For eukaryotic proteins, they will be in hand within 25 years. The 3D structures we will have at those times are not the 3D structure of the entire proteins encoded in single ORFs, but the 3D structures of separate structural domains. Measuring or predicting spatial arrangements of structural domains in an ORF will then be a coming issue of structural genomics.
AB - We have been developing FAMSBASE, a protein homology-modeling database of whole ORFs predicted from genome sequences. The latest update of FAMSBASE ( http://daisy.nagahama-i-bio.ac.jp/Famsbase/ ), which is based on the protein three-dimensional (3D) structures released by November 2003, contains modeled 3D structures for 368,724 open reading frames (ORFs) derived from genomes of 276 species, namely 17 archaebacterial, 130 eubacterial, 18 eukaryotic and 111 phage genomes. Those 276 genomes are predicted to have 734,193 ORFs in total and the current FAMSBASE contains protein 3D structure of approximately 50% of the ORF products. However, cases that a modeled 3D structure covers the whole part of an ORF product are rare. When portion of an ORF with 3D structure is compared in three kingdoms of life, in archaebacteria and eubacteria, approximately 60% of the ORFs have modeled 3D structures covering almost the entire amino acid sequences, however, the percentage falls to about 30% in eukaryotes. When annual differences in the number of ORFs with modeled 3D structure are calculated, the fraction of modeled 3D structures of soluble protein for archaebacteria is increased by 5%, and that for eubacteria by 7% in the last 3 years. Assuming that this rate would be maintained and that determination of 3D structures for predicted disordered regions is unattainable, whole soluble protein model structures of prokaryotes without the putative disordered regions will be in hand within 15 years. For eukaryotic proteins, they will be in hand within 25 years. The 3D structures we will have at those times are not the 3D structure of the entire proteins encoded in single ORFs, but the 3D structures of separate structural domains. Measuring or predicting spatial arrangements of structural domains in an ORF will then be a coming issue of structural genomics.
KW - Domain duplication
KW - Domain interactions
KW - Genome
KW - Homology modeling
KW - P-loop
KW - Structural genomics
UR - http://www.scopus.com/inward/record.url?scp=33846152637&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33846152637&partnerID=8YFLogxK
U2 - 10.1007/s10969-006-9010-3
DO - 10.1007/s10969-006-9010-3
M3 - Article
C2 - 17146617
AN - SCOPUS:33846152637
SN - 1345-711X
VL - 7
SP - 65
EP - 76
JO - Journal of Structural and Functional Genomics
JF - Journal of Structural and Functional Genomics
IS - 2
ER -