Abstract
Anomalous metallic states near the Mott insulator are analyzed in terms of the critical scaling toward the metal-insulator transition. Continuous transitions from a metal to the Mott insulator are characterized either by the mass divergence as in the bi-component systems or the vanishing carrier number as in the valence bond systems. A set of critical exponents in these two cases is deduced from the scaling theory. The correlation exponent v and the dynamical exponent z satisfy v = 1/2 d and z = 2 d when the mass diverges in d dimensions, while v = 1/2 and z = 2 if the carrier number vanishes. Crossovers between quantum critical regime and thermal critical regime inferred from this theory shed light on understanding experimental indications in high-Tc cuprates and other strongly correlated systems.
Original language | English |
---|---|
Pages (from-to) | 437-442 |
Number of pages | 6 |
Journal | Journal of Low Temperature Physics |
Volume | 99 |
Issue number | 3-4 |
DOIs | |
Publication status | Published - 1995 May 1 |
Externally published | Yes |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics
- Materials Science(all)
- Condensed Matter Physics