Decision maker based on atomic switches

Song Ju Kim, Tohru Tsuruoka, Tsuyoshi Hasegawa, Masashi Aono, Kazuya Terabe, Masakazu Aono

    Research output: Contribution to journalArticle

    9 Citations (Scopus)

    Abstract

    We propose a simple model for an atomic switch-based decision maker (ASDM), and show that, as long as its total number of metal atoms is conserved when coupled with suitable operations, an atomic switch system provides a sophisticated "decision-making" capability that is known to be one of the most important intellectual abilities in human beings. We considered a popular decisionmaking problem studied in the context of reinforcement learning, the multi-armed bandit problem (MAB); the problem of finding, as accurately and quickly as possible, the most profitable option from a set of options that gives stochastic rewards. These decisions are made as dictated by each volume of precipitated metal atoms, which is moved in a manner similar to the fluctuations of a rigid body in a tug-of-war game. The "tug-of-war (TOW) dynamics" of the ASDM exhibits higher efficiency than conventional reinforcement-learning algorithms. We show analytical calculations that validate the statistical reasons for the ASDM to produce such high performance, despite its simplicity. Efficient MAB solvers are useful for many practical applications, because MAB abstracts a variety of decisionmaking problems in real-world situations where an efficient trial-and-error is required. The proposed scheme will open up a new direction in physics-based analog-computing paradigms, which will include such things as "intelligent nanodevices" based on self-judgment.

    Original languageEnglish
    Pages (from-to)245-259
    Number of pages15
    JournalAIMS Materials Science
    Volume3
    Issue number1
    DOIs
    Publication statusPublished - 2016 Jan 1

      Fingerprint

    Keywords

    • Amoeba-inspired computing
    • Atomic switch
    • Multi-armed bandit problem
    • Natural computing
    • Reinforcement learning
    • Tug-of-war dynamics

    ASJC Scopus subject areas

    • Materials Science(all)

    Cite this

    Kim, S. J., Tsuruoka, T., Hasegawa, T., Aono, M., Terabe, K., & Aono, M. (2016). Decision maker based on atomic switches. AIMS Materials Science, 3(1), 245-259. https://doi.org/10.3934/matersci.2016.1.245