Deposition temperature dependence of optical gap and coloration efficiency spectrum in electrochromic tungsten oxide films

Research output: Contribution to journalArticle

72 Citations (Scopus)

Abstract

Optical gaps and electrochromic efficiencies of sputtered tungsten oxide films are studied by focusing attention on the cluster size of the film. The cluster consists of O-W-O network with terminal W=O bonds on its boundary. The quantity of W=O bonds increased with the surface area of the clusters. Raman scattering bands of the O-W-O and W=O are observed between 500 and 1100 cm-1. These characteristic Raman scattering bands of the film are well reproduced by the combination of four Gaussian shaped Raman bands of the O-W-O and W=O modes. The ratio of integrated Raman scattering intensities (W=O/O-W-O) of these modes are employed as the measure of the cluster size. The cluster is found to increase in size with the elevation of the film deposition temperature. Optical gap was observed to increase inversely proportional to the cluster size of the film. This cluster size dependence appears to have the same origin assigned in nanocrysallites. The electrochemical reduction of the film produces a broad asymmetric polaron absorption band in the optical region from near IR to visible. The coloration efficiency spectrum of this absorption band becomes higher with the cluster size, and its maximum position shifts to a lower energy side. This behavior is explained in terms of a polaron-polaron interaction and a polaron confinement in the cluster.

Original languageEnglish
Pages (from-to)1729-1734
Number of pages6
JournalJournal of the Electrochemical Society
Volume145
Issue number5
Publication statusPublished - 1998 May
Externally publishedYes

Fingerprint

tungsten oxides
Gene Conversion
Oxide films
Tungsten
oxide films
color
temperature dependence
Raman scattering
Absorption spectra
Temperature
Raman spectra
absorption spectra
tungsten oxide
shift

ASJC Scopus subject areas

  • Electrochemistry
  • Surfaces, Coatings and Films
  • Surfaces and Interfaces

Cite this

@article{867025c420724bb99270688ae00cb9b5,
title = "Deposition temperature dependence of optical gap and coloration efficiency spectrum in electrochromic tungsten oxide films",
abstract = "Optical gaps and electrochromic efficiencies of sputtered tungsten oxide films are studied by focusing attention on the cluster size of the film. The cluster consists of O-W-O network with terminal W=O bonds on its boundary. The quantity of W=O bonds increased with the surface area of the clusters. Raman scattering bands of the O-W-O and W=O are observed between 500 and 1100 cm-1. These characteristic Raman scattering bands of the film are well reproduced by the combination of four Gaussian shaped Raman bands of the O-W-O and W=O modes. The ratio of integrated Raman scattering intensities (W=O/O-W-O) of these modes are employed as the measure of the cluster size. The cluster is found to increase in size with the elevation of the film deposition temperature. Optical gap was observed to increase inversely proportional to the cluster size of the film. This cluster size dependence appears to have the same origin assigned in nanocrysallites. The electrochemical reduction of the film produces a broad asymmetric polaron absorption band in the optical region from near IR to visible. The coloration efficiency spectrum of this absorption band becomes higher with the cluster size, and its maximum position shifts to a lower energy side. This behavior is explained in terms of a polaron-polaron interaction and a polaron confinement in the cluster.",
author = "Takaya Kubo and Yoshinori Nishikitani",
year = "1998",
month = "5",
language = "English",
volume = "145",
pages = "1729--1734",
journal = "Journal of the Electrochemical Society",
issn = "0013-4651",
publisher = "Electrochemical Society, Inc.",
number = "5",

}

TY - JOUR

T1 - Deposition temperature dependence of optical gap and coloration efficiency spectrum in electrochromic tungsten oxide films

AU - Kubo, Takaya

AU - Nishikitani, Yoshinori

PY - 1998/5

Y1 - 1998/5

N2 - Optical gaps and electrochromic efficiencies of sputtered tungsten oxide films are studied by focusing attention on the cluster size of the film. The cluster consists of O-W-O network with terminal W=O bonds on its boundary. The quantity of W=O bonds increased with the surface area of the clusters. Raman scattering bands of the O-W-O and W=O are observed between 500 and 1100 cm-1. These characteristic Raman scattering bands of the film are well reproduced by the combination of four Gaussian shaped Raman bands of the O-W-O and W=O modes. The ratio of integrated Raman scattering intensities (W=O/O-W-O) of these modes are employed as the measure of the cluster size. The cluster is found to increase in size with the elevation of the film deposition temperature. Optical gap was observed to increase inversely proportional to the cluster size of the film. This cluster size dependence appears to have the same origin assigned in nanocrysallites. The electrochemical reduction of the film produces a broad asymmetric polaron absorption band in the optical region from near IR to visible. The coloration efficiency spectrum of this absorption band becomes higher with the cluster size, and its maximum position shifts to a lower energy side. This behavior is explained in terms of a polaron-polaron interaction and a polaron confinement in the cluster.

AB - Optical gaps and electrochromic efficiencies of sputtered tungsten oxide films are studied by focusing attention on the cluster size of the film. The cluster consists of O-W-O network with terminal W=O bonds on its boundary. The quantity of W=O bonds increased with the surface area of the clusters. Raman scattering bands of the O-W-O and W=O are observed between 500 and 1100 cm-1. These characteristic Raman scattering bands of the film are well reproduced by the combination of four Gaussian shaped Raman bands of the O-W-O and W=O modes. The ratio of integrated Raman scattering intensities (W=O/O-W-O) of these modes are employed as the measure of the cluster size. The cluster is found to increase in size with the elevation of the film deposition temperature. Optical gap was observed to increase inversely proportional to the cluster size of the film. This cluster size dependence appears to have the same origin assigned in nanocrysallites. The electrochemical reduction of the film produces a broad asymmetric polaron absorption band in the optical region from near IR to visible. The coloration efficiency spectrum of this absorption band becomes higher with the cluster size, and its maximum position shifts to a lower energy side. This behavior is explained in terms of a polaron-polaron interaction and a polaron confinement in the cluster.

UR - http://www.scopus.com/inward/record.url?scp=0032070286&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032070286&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0032070286

VL - 145

SP - 1729

EP - 1734

JO - Journal of the Electrochemical Society

JF - Journal of the Electrochemical Society

SN - 0013-4651

IS - 5

ER -