Design proposal for walking cane handle grips

K. Taniguchi, Atsuo Takanishi

    Research output: Contribution to journalArticle

    1 Citation (Scopus)

    Abstract

    Purpose: Many countries have an aging society, making the prevention of falls in older people an important issue and the danger of falls a primary concern for the elderly. Many studies have investigated the influence of patient activity while using different types of canes. However, very few studies have analyzed the grips of the handles of walking canes. The grip on a cane handle can easily be thought of as the most important part of the human/device interface in the prevention of falls. Many people have pain in their wrist that is caused by using incompatible handle grips. The handle grip shape is very important if the user is to obtain the most functionality and benefit from the cane1. We hypothesized that dorsi-flexion of the wrist causes increased loads on the wrist and decreases the efficiency of power. This study aims to elucidate a design for walking cane handle grips that is able to reduce dorsi-flexion of the wrist and is able to improve efficiency in power. We made a prototype (P-type) of a handle grip that has a different from the standard S-type grip. The P-type shape is positioned along the carpal bone (grayish color bone in Figure 1). Method: Eleven elderly subjects (aged 38 to 75 years old) were recruited. Each subject was asked to put the walking cane on random places on a force plate (the Nintendo Wii Balance Board WBB, a portable, inexpensive, and a reliable technologically-advanced device) with his right hand, while individual load was measured. This load was constant throughout testing. Many studies have reported that the WBB produces valid results for assessing balance while standing2. The Center of Pressure (COP) sway was recorded (sampling frequency, 50Hz) for 10 seconds. Informed consent was obtained from all participants. Three trials were tested for each subject, and the difference was calculated from the mean of the trial data that were derived from the COP values. Results & Discussion: Table 1 shows the variation between the two types of cane grips (P-type minus S-type). To evaluate the efficiency of power and stability in the P-type grip, we used the floor reaction force and the locus length of the COP. Table 1 shows that the P-type grip provides more stability and has greater efficiency of power than the S-type for most of the subjects. These results show that the design for a walking cane handle grip that considered carpal bone shape was effective in improving the stability and efficiency of power of the cane. In future analysis, we plan to explain the relevant parameters of the handle grip and the appropriate height for the handle for individual subjects.

    Original languageEnglish
    Pages (from-to)287
    Number of pages1
    JournalGerontechnology
    Volume13
    Issue number2
    DOIs
    Publication statusPublished - 2014

    Fingerprint

    Canes
    Hand Strength
    Walking
    Bone
    Wrist
    Carpal Bones
    Pressure
    Aging of materials
    Sampling
    Color
    Testing
    Equipment and Supplies
    Informed Consent
    Hand

    Keywords

    • Biomechanics
    • Gait aid
    • Mobility & transport
    • Walking cane handle grip

    ASJC Scopus subject areas

    • Geriatrics and Gerontology
    • Gerontology
    • Biomedical Engineering

    Cite this

    Design proposal for walking cane handle grips. / Taniguchi, K.; Takanishi, Atsuo.

    In: Gerontechnology, Vol. 13, No. 2, 2014, p. 287.

    Research output: Contribution to journalArticle

    Taniguchi, K. ; Takanishi, Atsuo. / Design proposal for walking cane handle grips. In: Gerontechnology. 2014 ; Vol. 13, No. 2. pp. 287.
    @article{146a2cda8b22456689a64cecfd9b78df,
    title = "Design proposal for walking cane handle grips",
    abstract = "Purpose: Many countries have an aging society, making the prevention of falls in older people an important issue and the danger of falls a primary concern for the elderly. Many studies have investigated the influence of patient activity while using different types of canes. However, very few studies have analyzed the grips of the handles of walking canes. The grip on a cane handle can easily be thought of as the most important part of the human/device interface in the prevention of falls. Many people have pain in their wrist that is caused by using incompatible handle grips. The handle grip shape is very important if the user is to obtain the most functionality and benefit from the cane1. We hypothesized that dorsi-flexion of the wrist causes increased loads on the wrist and decreases the efficiency of power. This study aims to elucidate a design for walking cane handle grips that is able to reduce dorsi-flexion of the wrist and is able to improve efficiency in power. We made a prototype (P-type) of a handle grip that has a different from the standard S-type grip. The P-type shape is positioned along the carpal bone (grayish color bone in Figure 1). Method: Eleven elderly subjects (aged 38 to 75 years old) were recruited. Each subject was asked to put the walking cane on random places on a force plate (the Nintendo Wii Balance Board WBB, a portable, inexpensive, and a reliable technologically-advanced device) with his right hand, while individual load was measured. This load was constant throughout testing. Many studies have reported that the WBB produces valid results for assessing balance while standing2. The Center of Pressure (COP) sway was recorded (sampling frequency, 50Hz) for 10 seconds. Informed consent was obtained from all participants. Three trials were tested for each subject, and the difference was calculated from the mean of the trial data that were derived from the COP values. Results & Discussion: Table 1 shows the variation between the two types of cane grips (P-type minus S-type). To evaluate the efficiency of power and stability in the P-type grip, we used the floor reaction force and the locus length of the COP. Table 1 shows that the P-type grip provides more stability and has greater efficiency of power than the S-type for most of the subjects. These results show that the design for a walking cane handle grip that considered carpal bone shape was effective in improving the stability and efficiency of power of the cane. In future analysis, we plan to explain the relevant parameters of the handle grip and the appropriate height for the handle for individual subjects.",
    keywords = "Biomechanics, Gait aid, Mobility & transport, Walking cane handle grip",
    author = "K. Taniguchi and Atsuo Takanishi",
    year = "2014",
    doi = "10.4017/gt.2014.13.02.087.00",
    language = "English",
    volume = "13",
    pages = "287",
    journal = "Gerontechnology",
    issn = "1569-1101",
    publisher = "International Society for Gerontechnology",
    number = "2",

    }

    TY - JOUR

    T1 - Design proposal for walking cane handle grips

    AU - Taniguchi, K.

    AU - Takanishi, Atsuo

    PY - 2014

    Y1 - 2014

    N2 - Purpose: Many countries have an aging society, making the prevention of falls in older people an important issue and the danger of falls a primary concern for the elderly. Many studies have investigated the influence of patient activity while using different types of canes. However, very few studies have analyzed the grips of the handles of walking canes. The grip on a cane handle can easily be thought of as the most important part of the human/device interface in the prevention of falls. Many people have pain in their wrist that is caused by using incompatible handle grips. The handle grip shape is very important if the user is to obtain the most functionality and benefit from the cane1. We hypothesized that dorsi-flexion of the wrist causes increased loads on the wrist and decreases the efficiency of power. This study aims to elucidate a design for walking cane handle grips that is able to reduce dorsi-flexion of the wrist and is able to improve efficiency in power. We made a prototype (P-type) of a handle grip that has a different from the standard S-type grip. The P-type shape is positioned along the carpal bone (grayish color bone in Figure 1). Method: Eleven elderly subjects (aged 38 to 75 years old) were recruited. Each subject was asked to put the walking cane on random places on a force plate (the Nintendo Wii Balance Board WBB, a portable, inexpensive, and a reliable technologically-advanced device) with his right hand, while individual load was measured. This load was constant throughout testing. Many studies have reported that the WBB produces valid results for assessing balance while standing2. The Center of Pressure (COP) sway was recorded (sampling frequency, 50Hz) for 10 seconds. Informed consent was obtained from all participants. Three trials were tested for each subject, and the difference was calculated from the mean of the trial data that were derived from the COP values. Results & Discussion: Table 1 shows the variation between the two types of cane grips (P-type minus S-type). To evaluate the efficiency of power and stability in the P-type grip, we used the floor reaction force and the locus length of the COP. Table 1 shows that the P-type grip provides more stability and has greater efficiency of power than the S-type for most of the subjects. These results show that the design for a walking cane handle grip that considered carpal bone shape was effective in improving the stability and efficiency of power of the cane. In future analysis, we plan to explain the relevant parameters of the handle grip and the appropriate height for the handle for individual subjects.

    AB - Purpose: Many countries have an aging society, making the prevention of falls in older people an important issue and the danger of falls a primary concern for the elderly. Many studies have investigated the influence of patient activity while using different types of canes. However, very few studies have analyzed the grips of the handles of walking canes. The grip on a cane handle can easily be thought of as the most important part of the human/device interface in the prevention of falls. Many people have pain in their wrist that is caused by using incompatible handle grips. The handle grip shape is very important if the user is to obtain the most functionality and benefit from the cane1. We hypothesized that dorsi-flexion of the wrist causes increased loads on the wrist and decreases the efficiency of power. This study aims to elucidate a design for walking cane handle grips that is able to reduce dorsi-flexion of the wrist and is able to improve efficiency in power. We made a prototype (P-type) of a handle grip that has a different from the standard S-type grip. The P-type shape is positioned along the carpal bone (grayish color bone in Figure 1). Method: Eleven elderly subjects (aged 38 to 75 years old) were recruited. Each subject was asked to put the walking cane on random places on a force plate (the Nintendo Wii Balance Board WBB, a portable, inexpensive, and a reliable technologically-advanced device) with his right hand, while individual load was measured. This load was constant throughout testing. Many studies have reported that the WBB produces valid results for assessing balance while standing2. The Center of Pressure (COP) sway was recorded (sampling frequency, 50Hz) for 10 seconds. Informed consent was obtained from all participants. Three trials were tested for each subject, and the difference was calculated from the mean of the trial data that were derived from the COP values. Results & Discussion: Table 1 shows the variation between the two types of cane grips (P-type minus S-type). To evaluate the efficiency of power and stability in the P-type grip, we used the floor reaction force and the locus length of the COP. Table 1 shows that the P-type grip provides more stability and has greater efficiency of power than the S-type for most of the subjects. These results show that the design for a walking cane handle grip that considered carpal bone shape was effective in improving the stability and efficiency of power of the cane. In future analysis, we plan to explain the relevant parameters of the handle grip and the appropriate height for the handle for individual subjects.

    KW - Biomechanics

    KW - Gait aid

    KW - Mobility & transport

    KW - Walking cane handle grip

    UR - http://www.scopus.com/inward/record.url?scp=84929415521&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84929415521&partnerID=8YFLogxK

    U2 - 10.4017/gt.2014.13.02.087.00

    DO - 10.4017/gt.2014.13.02.087.00

    M3 - Article

    AN - SCOPUS:84929415521

    VL - 13

    SP - 287

    JO - Gerontechnology

    JF - Gerontechnology

    SN - 1569-1101

    IS - 2

    ER -