Determinants of Resting Oxidative Stress in Middle-Aged and Elderly Men and Women: WASEDA'S Health Study

Takuji Kawamura, Kumpei Tanisawa, Ryoko Kawakami, Chiyoko Usui, Tomoko Ito, Hiroki Tabata, Nobuhiro Nakamura, Sayaka Kurosawa, Wonjun Choi, Sihui Ma, Zsolt Radak, Susumu S. Sawada, Katsuhiko Suzuki, Kaori Ishii, Shizuo Sakamoto, Koichiro Oka, Mitsuru Higuchi, Isao Muraoka

Research output: Contribution to journalArticlepeer-review

Abstract

Previous studies have not investigated the determinants of resting oxidative stress, including physical fitness, as it relates to redox regulation. The present study therefore was aimed at identifying lifestyle and biological factors that determine resting oxidative stress, including objectively measured physical fitness. In 873 middle-aged and elderly men and women, age and anthropometric parameters, lifestyle-related parameters, medication and supplementation status, physical fitness, biochemical parameters, and nutritional intake status, as well as three plasma oxidative stress markers: protein carbonyl (PC), F2-isoprostane (F2-IsoP), and thiobarbituric acid reactive substances (TBARS), were surveyed and measured. The determinants of PC, F2-IsoP, and TBARS in all participants were investigated using stepwise multiple regression analysis. In PC, age (β=-0.11, P=0.002), leg extension power (β=-0.12, P=0.008), BMI (β=0.12, P=0.004), and HDL-C (β=0.08, P=0.040) were included in the regression model (adjusted R2=0.018). In the F2-IsoP, smoking status (β=0.07, P=0.060), BMI (β=0.07, P=0.054), and HbA1c (β=-0.06, P=0.089) were included in the regression model (adjusted R2=0.006). In TBARS, glucose (β=0.18, P<0.001), CRF (β=0.16, P<0.001), age (β=0.15, P<0.001), TG (β=0.11, P=0.001), antioxidant supplementation (β=0.10, P=0.002), and HbA1c (β=-0.13, P=0.004) were included in the regression model (adjusted R2=0.071). In conclusion, the present study showed that age, anthropometric index, lifestyle-related parameters, medication and supplementation status, objectively measured physical fitness, biochemical parameters, and nutritional intake status explain less than 10% of oxidative stress at rest.

Original languageEnglish
Article number5566880
JournalOxidative medicine and cellular longevity
Volume2021
DOIs
Publication statusPublished - 2021

ASJC Scopus subject areas

  • Biochemistry
  • Ageing
  • Cell Biology

Fingerprint

Dive into the research topics of 'Determinants of Resting Oxidative Stress in Middle-Aged and Elderly Men and Women: WASEDA'S Health Study'. Together they form a unique fingerprint.

Cite this