Development and evaluation of a linear series clutch actuator for vertical joint application with static balancing

Shardul Kulkarni, Alexander Schmitz, Satoshi Funabashi, Shigeki Sugano

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Future robots are expected to share their workspace with humans. Controlling and limiting the forces that such robots exert on their environment is crucial. While force control can be achieved actively with the help of force sensing, passive mechanisms have no time delay in their response to external forces, and would therefore be preferable. Series clutch actuators can be used to achieve high levels of safety and backdrivability. This work presents the first implementation of a linear series clutch actuator. It can exert forces of more than 110N while weighing less than 2kg. Force controllability and safety are demonstrated. Static balancing, which is important for the application in a vertical joint, is also implemented. The power consumption is evaluated, and for a payload of 3kg and with the maximum speed of 94mm/s, the power consumed by the actuator is 11W. Overall, a practical implementation of a linear series clutch actuator is reported, which can be used for future collaborative robots.

Original languageEnglish
Title of host publication2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6353-6360
Number of pages8
ISBN (Electronic)9781728162126
DOIs
Publication statusPublished - 2020 Oct 24
Event2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020 - Las Vegas, United States
Duration: 2020 Oct 242021 Jan 24

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
CountryUnited States
CityLas Vegas
Period20/10/2421/1/24

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint Dive into the research topics of 'Development and evaluation of a linear series clutch actuator for vertical joint application with static balancing'. Together they form a unique fingerprint.

Cite this