Development and performance verification of a 3-D position-sensitive Compton camera for imaging MeV gamma rays

Hiroki Hosokoshi, Jun Kataoka, Saku Mochizuki, Masaki Yoneyama, Soichiro Ito, Hiroaki Kiji, Fumiya Nishi, Shuji Miyamoto, Tatsushi Shima

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


In gamma-ray astronomy, the 1–10 MeV range is one of the most challenging energy bands to observe owing to low photon signals and a considerable amount of background contamination. This energy band, however, comprises a substantial number of nuclear gamma-ray lines that may hold the key to understanding the nucleosynthesis at the core of stars, spatial distribution of cosmic rays, and interstellar medium. Although several studies have attempted to improve observation of this energy window, development of a detector for astronomy has not progressed since NASA launched the Compton Gamma Ray Observatory (CGRO) in 1991. In this work, we first developed a prototype 3-D position-sensitive Compton camera (3D-PSCC), and then conducted a performance verification at NewSUBARU, Hyogo in Japan. To mimic the situation of astronomical observation, we used a MeV gamma-ray beam produced by laser inverse Compton scattering. As a result, we obtained sharp peak images of incident gamma rays irradiating from incident angles of 0° and 20°. The angular resolution of the prototype 3D-PSCC was measured by the Angular Resolution Measure and estimated to be 3.4° ± 0.1° (full width at half maximum (FWHM)) at 1.7 MeV and 4.0° ± 0.5° (FWHM) at 3.9 MeV. Subsequently, we conceived a new geometry of the 3D-PSCC optimized for future astronomical observations, assuming a 50-kg class small satellite mission. The SΩ of the 3D-PSCC is 11 cm2sr, anticipated at 1 MeV, which is small but provides an interesting possibility to observe bright gamma-ray sources owing to the high intrinsic efficiency and large field of view (FoV).

Original languageEnglish
Article number18551
JournalScientific reports
Issue number1
Publication statusPublished - 2019 Dec 1

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Development and performance verification of a 3-D position-sensitive Compton camera for imaging MeV gamma rays'. Together they form a unique fingerprint.

Cite this