Development of a low noise pump by new design concept

Kazuyoshi Miyagawa, Ryuichi Sato

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

The Japan Defense Agency is conducting a project to develop a cavitation tunnel called the FNS (Flow Noise Simulator project)(1). The FNS was designed as a large cavitation tunnel with low background noise level to measure the noise of an object. In order to satisfy the low noise level for the FNS, it is important to develop a low noise pump. In the present study, several new design concepts were developed using CFD (Computational Fluid Dynamics) and these concepts and the pump performance were verified by model test. In developing low noise pump, it is important to avoid cavitation generation in all operating conditions. It is also important to reduce blade-passing influence due to blade row interaction between impeller and diffuser. To control unsteadiness by interaction, the axial gap between two blade rows was widened and viscous wake from the impeller was decreased. Many extensive parametric studies (e.g. blade sweep, number of blades) were conducted using three-dimensional CFD computations. The impeller developed for the FNS pump has seven blades, 4.3 m diameter and the stator downstream has nine blades. Several model tests were carried out to verify the design concept of the pump. I was confirmed that the noise level of the new design pump was decreased compared to a conventional industrial pump and efficiency was also improved.

Original languageEnglish
Title of host publicationProceedings of the 4th ASME/JSME Joint Fluids Engineering Conference
Subtitle of host publicationVolume 2, Part A, Symposia
EditorsA. Ogut, Y. Tsuji, M. Kawahashi, A. Ogut, Y. Tsuji, M. Kawahashi
Pages145-151
Number of pages7
Publication statusPublished - 2003 Dec 1
Externally publishedYes
Event4th ASME/JSME Joint Fluids Engineering Conference - Honolulu, HI, United States
Duration: 2003 Jul 62003 Jul 10

Publication series

NameProceedings of the ASME/JSME Joint Fluids Engineering Conference
Volume2 A

Conference

Conference4th ASME/JSME Joint Fluids Engineering Conference
Country/TerritoryUnited States
CityHonolulu, HI
Period03/7/603/7/10

ASJC Scopus subject areas

  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Development of a low noise pump by new design concept'. Together they form a unique fingerprint.

Cite this