Development of a robotic endoscope that locomotes in the colon with flexible helical fins.

M. Shikanai, N. Murai, K. Itoh, H. Ishii, A. Takanishi, K. Tanoue, S. Ieiri, K. Konishi, M. Hasizume

Research output: Contribution to journalArticle

Abstract

The purpose of this study was to develop a robotic endoscope that is low invasive, easy to operate and capable of locomotion from the rectum to the appendix in the human body. We believe that it would contribute to relieving pain in patients. We therefore developed a robotic endoscope that consists of a front and rear body with clockwise and anticlockwise helical fins, respectively. The front and rear bodies are connected via a DC motor. This robot moves forward in the colon by rotating the front body in the clockwise direction and the rear body in the anticlockwise direction. In addition, the radius of each helical fin can be changed by blowing air into a balloon implemented under each fin using an air compressor. Before experiments with animals, we performed experiments to evaluate the mechanical performance and safety of the robot. We confirmed that the maximum radius of the fins was less than the maximum radius of the colon by blowing air continuously into the balloons. We then confirmed that the robot can locomote in the colon without invasion of scratch and make short hole by performing an in-vivo experiment in live swine.

Original languageEnglish
Pages (from-to)5126-5129
Number of pages4
JournalConference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference
Publication statusPublished - 2009
Externally publishedYes

Fingerprint

Endoscopy
Endoscopes
Robotics
Colon
Balloons
Air
Robots
Blow molding
DC motors
Experiments
Appendix
Locomotion
Human Body
Rectum
Compressors
Animals
Swine
Safety
Pain
Direction compound

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Cite this

@article{744ee918928d44e891ce872c2310f65b,
title = "Development of a robotic endoscope that locomotes in the colon with flexible helical fins.",
abstract = "The purpose of this study was to develop a robotic endoscope that is low invasive, easy to operate and capable of locomotion from the rectum to the appendix in the human body. We believe that it would contribute to relieving pain in patients. We therefore developed a robotic endoscope that consists of a front and rear body with clockwise and anticlockwise helical fins, respectively. The front and rear bodies are connected via a DC motor. This robot moves forward in the colon by rotating the front body in the clockwise direction and the rear body in the anticlockwise direction. In addition, the radius of each helical fin can be changed by blowing air into a balloon implemented under each fin using an air compressor. Before experiments with animals, we performed experiments to evaluate the mechanical performance and safety of the robot. We confirmed that the maximum radius of the fins was less than the maximum radius of the colon by blowing air continuously into the balloons. We then confirmed that the robot can locomote in the colon without invasion of scratch and make short hole by performing an in-vivo experiment in live swine.",
author = "M. Shikanai and N. Murai and K. Itoh and H. Ishii and A. Takanishi and K. Tanoue and S. Ieiri and K. Konishi and M. Hasizume",
year = "2009",
language = "English",
pages = "5126--5129",
journal = "Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference",
issn = "1557-170X",
publisher = "Institute of Electrical and Electronics Engineers Inc.",

}

TY - JOUR

T1 - Development of a robotic endoscope that locomotes in the colon with flexible helical fins.

AU - Shikanai, M.

AU - Murai, N.

AU - Itoh, K.

AU - Ishii, H.

AU - Takanishi, A.

AU - Tanoue, K.

AU - Ieiri, S.

AU - Konishi, K.

AU - Hasizume, M.

PY - 2009

Y1 - 2009

N2 - The purpose of this study was to develop a robotic endoscope that is low invasive, easy to operate and capable of locomotion from the rectum to the appendix in the human body. We believe that it would contribute to relieving pain in patients. We therefore developed a robotic endoscope that consists of a front and rear body with clockwise and anticlockwise helical fins, respectively. The front and rear bodies are connected via a DC motor. This robot moves forward in the colon by rotating the front body in the clockwise direction and the rear body in the anticlockwise direction. In addition, the radius of each helical fin can be changed by blowing air into a balloon implemented under each fin using an air compressor. Before experiments with animals, we performed experiments to evaluate the mechanical performance and safety of the robot. We confirmed that the maximum radius of the fins was less than the maximum radius of the colon by blowing air continuously into the balloons. We then confirmed that the robot can locomote in the colon without invasion of scratch and make short hole by performing an in-vivo experiment in live swine.

AB - The purpose of this study was to develop a robotic endoscope that is low invasive, easy to operate and capable of locomotion from the rectum to the appendix in the human body. We believe that it would contribute to relieving pain in patients. We therefore developed a robotic endoscope that consists of a front and rear body with clockwise and anticlockwise helical fins, respectively. The front and rear bodies are connected via a DC motor. This robot moves forward in the colon by rotating the front body in the clockwise direction and the rear body in the anticlockwise direction. In addition, the radius of each helical fin can be changed by blowing air into a balloon implemented under each fin using an air compressor. Before experiments with animals, we performed experiments to evaluate the mechanical performance and safety of the robot. We confirmed that the maximum radius of the fins was less than the maximum radius of the colon by blowing air continuously into the balloons. We then confirmed that the robot can locomote in the colon without invasion of scratch and make short hole by performing an in-vivo experiment in live swine.

UR - http://www.scopus.com/inward/record.url?scp=84903870450&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84903870450&partnerID=8YFLogxK

M3 - Article

SP - 5126

EP - 5129

JO - Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference

JF - Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference

SN - 1557-170X

ER -