Development of Neonatal Airway Management Simulator for Evaluation of Tracheal Intubation

Y. Takebe, M. Shiina, Y. Sugamiya, Y. Nakae, T. Katayama, T. Otani, H. Ishii, A. Takanishi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The long-term goal of this study is a training system that can simulate medical cases and advise physicians based on quantitative evaluation of neonatal resuscitation. In this paper, we designed and manufactured a neonatal airway management simulator for quantitative evaluation of tracheal intubation. This robotic simulator is equipped with 25 sensors of 6 types, which detect motions that lead to complications, inside the manikin replicated a neonate. A performance experiment of the developed sensor and an evaluation experiment with physicians were conducted. We observed that an erroneous operation in the laryngoscopy can be detected by the sensors in our simulator.

Original languageEnglish
Title of host publication43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7535-7538
Number of pages4
ISBN (Electronic)9781728111797
DOIs
Publication statusPublished - 2021
Event43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021 - Virtual, Online, Mexico
Duration: 2021 Nov 12021 Nov 5

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
Country/TerritoryMexico
CityVirtual, Online
Period21/11/121/11/5

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Development of Neonatal Airway Management Simulator for Evaluation of Tracheal Intubation'. Together they form a unique fingerprint.

Cite this