Direct observation of the rotation of F1-ATPase

Hiroyuki Noji, Ryohei Yasuda, Masasuke Yoshida*, Kazuhiko Kinosita

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1965 Citations (Scopus)

Abstract

Cells employ a variety of linear motors, such as myosin, kinesin and RNA polymerase, which move along and exert force on a filamentous structure. But only one rotary motor has been investigated in detail, the bacterial flagellum (a complex of about 100 protein molecules). We now show that a single molecule of F1-ATPase acts as a rotary motor, the smallest known, by direct observation of its motion. A central rotor of radius ~1 nm, formed by its γ-subunit, turns in a stator barrel of radius ~5 nm formed by three α- and three β-subunits. F1-ATPase, together with the membrane-embedded proton-conducting unit F0, forms the H+-ATP synthase that reversibly couples transmembrane proton flow to ATP synthesis/hydrolysis in respiring and photosynthetic cells. It has been suggested that the γ-subunit of F1- ATPase rotates within the αβ-hexamer, a conjecture supported by structural, biochemical and spectroscopic studies. We attached a fluorescent actin filament to the γ-subunit as a marker, which enabled us to observe this motion directly. In the presence of ATP, the filament rotated for more than 100 revolutions in an anticlockwise direction when viewed from the 'membrane' side. The rotary torque produced reached more than 40 pN nm-1 under high load.

Original languageEnglish
Pages (from-to)299-302
Number of pages4
JournalNature
Volume386
Issue number6622
DOIs
Publication statusPublished - 1997 Mar 20
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Direct observation of the rotation of F1-ATPase'. Together they form a unique fingerprint.

Cite this