TY - JOUR
T1 - Direct observation of the rotation of F1-ATPase
AU - Noji, Hiroyuki
AU - Yasuda, Ryohei
AU - Yoshida, Masasuke
AU - Kinosita, Kazuhiko
PY - 1997/3/20
Y1 - 1997/3/20
N2 - Cells employ a variety of linear motors, such as myosin, kinesin and RNA polymerase, which move along and exert force on a filamentous structure. But only one rotary motor has been investigated in detail, the bacterial flagellum (a complex of about 100 protein molecules). We now show that a single molecule of F1-ATPase acts as a rotary motor, the smallest known, by direct observation of its motion. A central rotor of radius ~1 nm, formed by its γ-subunit, turns in a stator barrel of radius ~5 nm formed by three α- and three β-subunits. F1-ATPase, together with the membrane-embedded proton-conducting unit F0, forms the H+-ATP synthase that reversibly couples transmembrane proton flow to ATP synthesis/hydrolysis in respiring and photosynthetic cells. It has been suggested that the γ-subunit of F1- ATPase rotates within the αβ-hexamer, a conjecture supported by structural, biochemical and spectroscopic studies. We attached a fluorescent actin filament to the γ-subunit as a marker, which enabled us to observe this motion directly. In the presence of ATP, the filament rotated for more than 100 revolutions in an anticlockwise direction when viewed from the 'membrane' side. The rotary torque produced reached more than 40 pN nm-1 under high load.
AB - Cells employ a variety of linear motors, such as myosin, kinesin and RNA polymerase, which move along and exert force on a filamentous structure. But only one rotary motor has been investigated in detail, the bacterial flagellum (a complex of about 100 protein molecules). We now show that a single molecule of F1-ATPase acts as a rotary motor, the smallest known, by direct observation of its motion. A central rotor of radius ~1 nm, formed by its γ-subunit, turns in a stator barrel of radius ~5 nm formed by three α- and three β-subunits. F1-ATPase, together with the membrane-embedded proton-conducting unit F0, forms the H+-ATP synthase that reversibly couples transmembrane proton flow to ATP synthesis/hydrolysis in respiring and photosynthetic cells. It has been suggested that the γ-subunit of F1- ATPase rotates within the αβ-hexamer, a conjecture supported by structural, biochemical and spectroscopic studies. We attached a fluorescent actin filament to the γ-subunit as a marker, which enabled us to observe this motion directly. In the presence of ATP, the filament rotated for more than 100 revolutions in an anticlockwise direction when viewed from the 'membrane' side. The rotary torque produced reached more than 40 pN nm-1 under high load.
UR - http://www.scopus.com/inward/record.url?scp=0030934380&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030934380&partnerID=8YFLogxK
U2 - 10.1038/386299a0
DO - 10.1038/386299a0
M3 - Article
C2 - 9069291
AN - SCOPUS:0030934380
SN - 0028-0836
VL - 386
SP - 299
EP - 302
JO - Nature
JF - Nature
IS - 6622
ER -