TY - JOUR
T1 - Discovery of 3-cinnamamido-n-substituted benzamides as potential antimalarial agents
AU - Liu, Haicheng
AU - Futamura, Yushi
AU - Wu, Honghai
AU - Ishiyama, Aki
AU - Zhang, Taotao
AU - Shi, Tao
AU - Zheng, Qunxiong
AU - Iwatsuki, Masato
AU - Ōmura, Satoshi
AU - Zou, Hongbin
AU - Osada, Hiroyuki
N1 - Funding Information:
This work was supported by the National Key R&D Program of China (No. 2017YFE0102200) and the Zhejiang Provincial Fund for Distinguished Young Scholars (LR15B020001).
Publisher Copyright:
© 2021 Bentham Science Publishers.
PY - 2021/12
Y1 - 2021/12
N2 - Background: Malaria is one of the most devastating parasitic diseases, yet the discovery of antimalarial agents remains profoundly challenging. Very few new antimalarials have been developed in the past 50 years, while the emergence of drug-resistance continues to appear. Objective: This study focuses on the discovery, design, synthesis, and antimalarial evaluation of 3- cinnamamido-N-substituted benzamides. Methods: In this study, a screening of our compound library was carried out against the multidrugsensitive Plasmodium falciparum 3D7 strain. Derivatives of the hit were designed, synthesized and tested against P. falciparum 3D7 and the in vivo antimalarial activity of the most active compounds was evaluated using the method of Peters’ 4-day suppressive test. Results: The retrieved hit compound 1 containing a 3-cinnamamido-N-substituted benzamide skeleton showed moderate antimalarial activity (IC50 = 1.20 μM) for the first time. A series of derivatives were then synthesized through a simple four-step workflow, and half of them exhibited slightly better antimalarial effect than the precursor 1 during the subsequent in vitro assays. Additionally, compounds 11, 23, 30 and 31 displayed potent activity with IC50 values of approximately 0.1 μM, and weak cytotoxicity against mammalian cells. However, in vivo antimalarial activity is not effective, which might be ascribed to the poor solubility of these compounds. Conclusion: In this study, the phenotypic screen of our compound library resulted in the first report of a 3-cinnamamide framework with antimalarial activity and 40 derivatives were then designed and synthesized. Subsequent structure-activity studies showed that compounds 11, 23, 30 and 31 exhibited the most potent and selective activity against the P. falciparum 3D7 strain with IC50 values around 0.1 μM. Our work herein sets another example of phenotypic screen-based drug discovery, leading to potentially promising candidates of novel antimalarial agents once given further optimization.
AB - Background: Malaria is one of the most devastating parasitic diseases, yet the discovery of antimalarial agents remains profoundly challenging. Very few new antimalarials have been developed in the past 50 years, while the emergence of drug-resistance continues to appear. Objective: This study focuses on the discovery, design, synthesis, and antimalarial evaluation of 3- cinnamamido-N-substituted benzamides. Methods: In this study, a screening of our compound library was carried out against the multidrugsensitive Plasmodium falciparum 3D7 strain. Derivatives of the hit were designed, synthesized and tested against P. falciparum 3D7 and the in vivo antimalarial activity of the most active compounds was evaluated using the method of Peters’ 4-day suppressive test. Results: The retrieved hit compound 1 containing a 3-cinnamamido-N-substituted benzamide skeleton showed moderate antimalarial activity (IC50 = 1.20 μM) for the first time. A series of derivatives were then synthesized through a simple four-step workflow, and half of them exhibited slightly better antimalarial effect than the precursor 1 during the subsequent in vitro assays. Additionally, compounds 11, 23, 30 and 31 displayed potent activity with IC50 values of approximately 0.1 μM, and weak cytotoxicity against mammalian cells. However, in vivo antimalarial activity is not effective, which might be ascribed to the poor solubility of these compounds. Conclusion: In this study, the phenotypic screen of our compound library resulted in the first report of a 3-cinnamamide framework with antimalarial activity and 40 derivatives were then designed and synthesized. Subsequent structure-activity studies showed that compounds 11, 23, 30 and 31 exhibited the most potent and selective activity against the P. falciparum 3D7 strain with IC50 values around 0.1 μM. Our work herein sets another example of phenotypic screen-based drug discovery, leading to potentially promising candidates of novel antimalarial agents once given further optimization.
KW - 3-cinnamamido- N-substituted benzamides
KW - Antimalarial activity
KW - Cinnamamide framework
KW - Drug discovery
KW - Phenotypic screen
KW - Plasmodium falciparum 3D7
UR - http://www.scopus.com/inward/record.url?scp=85122109526&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85122109526&partnerID=8YFLogxK
U2 - 10.2174/1573406416666200817160708
DO - 10.2174/1573406416666200817160708
M3 - Article
C2 - 32807065
AN - SCOPUS:85122109526
SN - 1573-4064
VL - 17
SP - 1207
EP - 1218
JO - Medicinal Chemistry
JF - Medicinal Chemistry
IS - 10
ER -