Disrupting tumor onset and growth via selective cell tagging (SeCT) therapy

Kenward Vong, Tsuyoshi Tahara, Sayaka Urano, Igor Nasibullin, Kazuki Tsubokura, Yoichi Nakao, Almira Kurbangalieva, Hirotaka Onoe, Yasuyoshi Watanabe, Katsunori Tanaka*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

This study presents the early framework of selective cell tagging (SeCT) therapy, which is the concept of preferentially labeling specific cells in vivo with chemical moieties that can elicit a therapeutic response. Using glycosylated artificial metalloenzyme (GArM)-based protein labeling, this study reports two separate functional strategies. In one approach, early tumor onset can be suppressed by tagging cancer cells in living mice with an integrin-blocking cyclic-Arg-Gly-Asp (cRGD) moiety, thereby disrupting cell adhesion onto the extracellular matrix. In another approach, tumor growth in mice can be reduced by tagging with a cytotoxic doxorubicin moiety. Subsequent cell death occurs following internalization and drug release. Overall, experiments have shown that mouse populations receiving the mixture of SeCT labeling reagents exhibited a significant delay/reduction in tumor onset and growth compared with controls. Highlighting its adaptability, this work represents a foundational step for further development of SeCT therapy and its potential therapeutic applications.

Original languageEnglish
Article numbereabg4038
JournalScience Advances
Volume7
Issue number17
DOIs
Publication statusPublished - 2021 Apr 21

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Disrupting tumor onset and growth via selective cell tagging (SeCT) therapy'. Together they form a unique fingerprint.

Cite this