Distinct conformation of ATP molecule in solution and on protein

Eri Kobayashi, Kei Yura, Yoshinori Nagai

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Adenosine triphosphate (ATP) is a versatile molecule used mainly for energy and a phosphate source. The hydrolysis of γ phosphate initiates the reactions and these reactions almost always start when ATP binds to protein. Therefore, there should be a mechanism to prevent spontaneous hydrolysis reaction and a mechanism to lead ATP to a pure energy source or to a phosphate source. To address these questions, we extensively analyzed the effect of protein to ATP conformation based on the sampling of the ATP solution conformations obtained from molecular dynamics simulation and the sampling of ATP structures bound to protein found in a protein structure database. The comparison revealed mainly the following three points; 1) The ribose ring in ATP molecule, which puckers in many ways in solution, tends to assume either C2′ exo or C2′ endo when it binds to protein. 2) The adenine ring in ATP molecule, which takes open-book motion with the two ring structures, has two distinct structures when ATP binds to protein. 3) The glycosyl-bond and the bond between phosphate and the ribose have unique torsion angles, when ATP binds to protein. The combination of torsion angles found in protein-bound forms is under-represented in ATP molecule in water. These findings suggest that ATP-binding protein exerts forces on ATP molecule to assume a conformation that is rarely found in solution, and that this conformation change should be a trigger for the reactions on ATP molecule.

Original languageEnglish
Pages (from-to)1-12
Number of pages12
JournalBiophysics (Japan)
Volume9
DOIs
Publication statusPublished - 2013
Externally publishedYes

Fingerprint

Adenosine Triphosphate
Proteins
Phosphates
Ribose
Hydrolysis
Protein Databases
Adenine
Molecular Dynamics Simulation
Carrier Proteins
Water

Keywords

  • Adenosine triphosphate
  • Curvature
  • Database analysis
  • Molecular dynamics simulation
  • Torsion angle

ASJC Scopus subject areas

  • Biophysics

Cite this

Distinct conformation of ATP molecule in solution and on protein. / Kobayashi, Eri; Yura, Kei; Nagai, Yoshinori.

In: Biophysics (Japan), Vol. 9, 2013, p. 1-12.

Research output: Contribution to journalArticle

Kobayashi, Eri ; Yura, Kei ; Nagai, Yoshinori. / Distinct conformation of ATP molecule in solution and on protein. In: Biophysics (Japan). 2013 ; Vol. 9. pp. 1-12.
@article{0199dcd5a4434daca527ed734562922e,
title = "Distinct conformation of ATP molecule in solution and on protein",
abstract = "Adenosine triphosphate (ATP) is a versatile molecule used mainly for energy and a phosphate source. The hydrolysis of γ phosphate initiates the reactions and these reactions almost always start when ATP binds to protein. Therefore, there should be a mechanism to prevent spontaneous hydrolysis reaction and a mechanism to lead ATP to a pure energy source or to a phosphate source. To address these questions, we extensively analyzed the effect of protein to ATP conformation based on the sampling of the ATP solution conformations obtained from molecular dynamics simulation and the sampling of ATP structures bound to protein found in a protein structure database. The comparison revealed mainly the following three points; 1) The ribose ring in ATP molecule, which puckers in many ways in solution, tends to assume either C2′ exo or C2′ endo when it binds to protein. 2) The adenine ring in ATP molecule, which takes open-book motion with the two ring structures, has two distinct structures when ATP binds to protein. 3) The glycosyl-bond and the bond between phosphate and the ribose have unique torsion angles, when ATP binds to protein. The combination of torsion angles found in protein-bound forms is under-represented in ATP molecule in water. These findings suggest that ATP-binding protein exerts forces on ATP molecule to assume a conformation that is rarely found in solution, and that this conformation change should be a trigger for the reactions on ATP molecule.",
keywords = "Adenosine triphosphate, Curvature, Database analysis, Molecular dynamics simulation, Torsion angle",
author = "Eri Kobayashi and Kei Yura and Yoshinori Nagai",
year = "2013",
doi = "10.2142/biophysics.9.1",
language = "English",
volume = "9",
pages = "1--12",
journal = "Biophysics (Japan)",
issn = "1349-2942",
publisher = "Biophysical Society of Japan",

}

TY - JOUR

T1 - Distinct conformation of ATP molecule in solution and on protein

AU - Kobayashi, Eri

AU - Yura, Kei

AU - Nagai, Yoshinori

PY - 2013

Y1 - 2013

N2 - Adenosine triphosphate (ATP) is a versatile molecule used mainly for energy and a phosphate source. The hydrolysis of γ phosphate initiates the reactions and these reactions almost always start when ATP binds to protein. Therefore, there should be a mechanism to prevent spontaneous hydrolysis reaction and a mechanism to lead ATP to a pure energy source or to a phosphate source. To address these questions, we extensively analyzed the effect of protein to ATP conformation based on the sampling of the ATP solution conformations obtained from molecular dynamics simulation and the sampling of ATP structures bound to protein found in a protein structure database. The comparison revealed mainly the following three points; 1) The ribose ring in ATP molecule, which puckers in many ways in solution, tends to assume either C2′ exo or C2′ endo when it binds to protein. 2) The adenine ring in ATP molecule, which takes open-book motion with the two ring structures, has two distinct structures when ATP binds to protein. 3) The glycosyl-bond and the bond between phosphate and the ribose have unique torsion angles, when ATP binds to protein. The combination of torsion angles found in protein-bound forms is under-represented in ATP molecule in water. These findings suggest that ATP-binding protein exerts forces on ATP molecule to assume a conformation that is rarely found in solution, and that this conformation change should be a trigger for the reactions on ATP molecule.

AB - Adenosine triphosphate (ATP) is a versatile molecule used mainly for energy and a phosphate source. The hydrolysis of γ phosphate initiates the reactions and these reactions almost always start when ATP binds to protein. Therefore, there should be a mechanism to prevent spontaneous hydrolysis reaction and a mechanism to lead ATP to a pure energy source or to a phosphate source. To address these questions, we extensively analyzed the effect of protein to ATP conformation based on the sampling of the ATP solution conformations obtained from molecular dynamics simulation and the sampling of ATP structures bound to protein found in a protein structure database. The comparison revealed mainly the following three points; 1) The ribose ring in ATP molecule, which puckers in many ways in solution, tends to assume either C2′ exo or C2′ endo when it binds to protein. 2) The adenine ring in ATP molecule, which takes open-book motion with the two ring structures, has two distinct structures when ATP binds to protein. 3) The glycosyl-bond and the bond between phosphate and the ribose have unique torsion angles, when ATP binds to protein. The combination of torsion angles found in protein-bound forms is under-represented in ATP molecule in water. These findings suggest that ATP-binding protein exerts forces on ATP molecule to assume a conformation that is rarely found in solution, and that this conformation change should be a trigger for the reactions on ATP molecule.

KW - Adenosine triphosphate

KW - Curvature

KW - Database analysis

KW - Molecular dynamics simulation

KW - Torsion angle

UR - http://www.scopus.com/inward/record.url?scp=84872716287&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84872716287&partnerID=8YFLogxK

U2 - 10.2142/biophysics.9.1

DO - 10.2142/biophysics.9.1

M3 - Article

VL - 9

SP - 1

EP - 12

JO - Biophysics (Japan)

JF - Biophysics (Japan)

SN - 1349-2942

ER -