Distinguishing between inflationary models from cosmic microwave background

Shinji Tsujikawa*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)


In this paper, inflationary cosmology is reviewed, paying particular attention to its observational signatures associated with large-scale density perturbations generated from quantum fluctuations. In the most general scalar-tensor theories with second-order equations of motion, we derive the scalar spectral index ns, the tensor-to-scalar ratio r, and the nonlinear estimator fNL of primordial non-Gaussianities to confront models with observations of cosmic microwave background (CMB) temperature anisotropies. Our analysis includes models such as potential-driven slow-roll inflation, k-inflation, Starobinsky inflation, and Higgs inflation with non-minimal/derivative/Galileon couplings. We constrain a host of inflationary models by using the Planck data combined with other measurements to find models most favored observationally in the current literature. We also study anisotropic inflation based on a scalar coupling with a vector (or two-form) field and discuss its observational signatures appearing in the two-point and three-point correlation functions of scalar and tensor perturbations.

Original languageEnglish
Article number06B104
JournalProgress of Theoretical and Experimental Physics
Issue number6
Publication statusPublished - 2014 Jun
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy(all)


Dive into the research topics of 'Distinguishing between inflationary models from cosmic microwave background'. Together they form a unique fingerprint.

Cite this