TY - GEN
T1 - Effect of bifurcation on pulse wave propagation in human arteries
AU - Kawai, Yusuke
AU - Kaneko, Shigehiko
PY - 2010/12/1
Y1 - 2010/12/1
N2 - In recent years, arteriosclerotic cardiovascular disease becomes a serious problem in the developed countries. The degree of the arteriosclerosis should be examined routinely and invasively, and the measurement of pulse wave is considered as an effective estimation method. Nowadays, pulse wave is widely used in clinical practice as a noninvasive method of examining circulatory kinetics, but the mechanism in the process of the systolic wave generated at heart and propagating to the peripheral artery remains to be elucidated. In this research, to investigate the effect of bifurcation on pulse wave propagation, numerical simulations by a dynamic model of arteries and in vitro experiments were conducted. A onedimensional model of arteries is coupled by partial differential equations describing mass and momentum conservation with the tube law that relates the local cross-sectional area to the local radial pressure difference. In the case of a bifurcated artery model, the governing equations were solved by introducing the momentum caused by the reactive force at bifurcation into the equation of momentum conservation. The momentum by the reactive force at bifurcation was supposed to be proportional to the momentum flowing into the bifurcation, and the proportionality coefficient was derived from experiments. Then, the proposed one-dimensional model was validated by a comparison to experimental data. In the experimental setup, elastic tubes with different values of Young's modulus were tested to simulate human arteries. From the numerical and experimental results, it turns out that the characteristic waveforms of the pressure and velocity obtained from experiments are also captured by the numerical calculations.
AB - In recent years, arteriosclerotic cardiovascular disease becomes a serious problem in the developed countries. The degree of the arteriosclerosis should be examined routinely and invasively, and the measurement of pulse wave is considered as an effective estimation method. Nowadays, pulse wave is widely used in clinical practice as a noninvasive method of examining circulatory kinetics, but the mechanism in the process of the systolic wave generated at heart and propagating to the peripheral artery remains to be elucidated. In this research, to investigate the effect of bifurcation on pulse wave propagation, numerical simulations by a dynamic model of arteries and in vitro experiments were conducted. A onedimensional model of arteries is coupled by partial differential equations describing mass and momentum conservation with the tube law that relates the local cross-sectional area to the local radial pressure difference. In the case of a bifurcated artery model, the governing equations were solved by introducing the momentum caused by the reactive force at bifurcation into the equation of momentum conservation. The momentum by the reactive force at bifurcation was supposed to be proportional to the momentum flowing into the bifurcation, and the proportionality coefficient was derived from experiments. Then, the proposed one-dimensional model was validated by a comparison to experimental data. In the experimental setup, elastic tubes with different values of Young's modulus were tested to simulate human arteries. From the numerical and experimental results, it turns out that the characteristic waveforms of the pressure and velocity obtained from experiments are also captured by the numerical calculations.
UR - http://www.scopus.com/inward/record.url?scp=80054971391&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80054971391&partnerID=8YFLogxK
U2 - 10.1115/FEDSM-ICNMM2010-30675
DO - 10.1115/FEDSM-ICNMM2010-30675
M3 - Conference contribution
AN - SCOPUS:80054971391
SN - 9780791854518
T3 - American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
SP - 983
EP - 989
BT - ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting Collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels, FEDSM2010
T2 - ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting, FEDSM 2010 - ASME 2010 7th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, and Flow-Induced Vibration and Noise, FSI2 and FIV+N
Y2 - 1 August 2010 through 5 August 2010
ER -