Abstract
We studied, both theoretically and experimentally, the ac magnetic response of type-II superconductors superimposed on a weak Hdc field. Theoretical simulations were made within the construct of the Kim-Anderson critical-state model, where the critical current density Jc is assumed to be given by Jc= k / (B0+|Bi|). k and B0 are temperature-dependent material parameters, and Bi is the local flux density in the sample. We also measured complex susceptibilities Xn=X′n-iX″n (n=1,2,3,5,7) of a melt-processed YBa2Cu3Oy specimen and analyzed the observed Xn by applying the magnetization equations derived from the Kim-Anderson model. We found that the experimental results were qualitatively well reproduced. Present results indicate that, for a specimen of which Jc sensitively varies with B1, the effect of a weak Hdc should be explicitly taken into consideration for studies of the ac magnetization.
Original language | English |
---|---|
Pages (from-to) | 655-660 |
Number of pages | 6 |
Journal | Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy |
Volume | 45 |
Issue number | 7 |
Publication status | Published - 1998 Jul |
Externally published | Yes |
Keywords
- Complex susceptibility
- Critical-state model
- Melt-processed YBaCuO
ASJC Scopus subject areas
- Mechanical Engineering
- Metals and Alloys