Effects of high-intensity intermittent swimming on glucose transport in rat epitrochlearis muscle

Kentaro Kawanaka, Izumi Tabata, Ayumi Tanaka, Mitsuru Higuchi

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

Recently (K. Kawanaka, I. Tahata, and M. Higuchi. J. Appl. Physiol. 83: 429-433, 1997), we demonstrated that glucose transport activity after repeated 10-s-long in vitro tetani in rat epitrochlearis (Epi) muscle was negatively correlated with the postcontraction muscle glycogen concentration. Therefore, we examined whether high-intensity intermittent swimming, which depletes muscle glycogen to a lower level than that observed after ten 10-s- long in vitro tetani, elicits higher glucose transport than that observed after ten 10-s-long in vitro tetani, which has been regarded as the exercise- induced maximal stimulus for glucose transport. In male rats, 2-deoxy-D- glucose transport rate in Epi muscle after eight bouts of high-intensity intermittent swimming with a weight equal to 18% of body mass (exercise duration: 20 s, rest duration between exercise bouts: 40 s) was higher than that observed after the ten 10-s-long tetani (2.25 ± 0.08 vs. 1.02 ± 0.16 μmol · ml intracellular water-1 · 20 min-1). Muscle glycogen concentration in Epi after eight bouts of high-intensity intermittent swimming was significantly lower than that observed after ten 10-s-long in vitro tetani (7.6 ± 0.5 vs. 14.8 ± 1.4 μmol glucose/g muscle). These observations show that the high-intensity intermittent swimming increases glucose transport in rat Epi to a much higher level than that induced by ten 10-s-long in vitro tetani, which has been regarded as the exercise-related maximal stimulus for glucose transport. Furthermore, this finding suggests that the lower muscle glycogen level after high-intensity intermittent swimming than after in vitro tetani may play a role, because there was a significant negative correlation between glucose transport and muscle glycogen concentration in Epi after high-intensity swimming and in vitro tetani.

Original languageEnglish
Pages (from-to)1852-1857
Number of pages6
JournalJournal of Applied Physiology
Volume84
Issue number6
Publication statusPublished - 1998
Externally publishedYes

Keywords

  • 2-deoxy-D-glucose transport
  • Exercise-induced maximal glucose transport
  • Muscle glycogen

ASJC Scopus subject areas

  • Physiology
  • Endocrinology
  • Orthopedics and Sports Medicine
  • Physical Therapy, Sports Therapy and Rehabilitation

Fingerprint Dive into the research topics of 'Effects of high-intensity intermittent swimming on glucose transport in rat epitrochlearis muscle'. Together they form a unique fingerprint.

  • Cite this