Effects of MgADP on length dependence of tension generation in skinned rat cardiac muscle.

N. Fukuda, H. Kajiwara, S. Ishiwata, S. Kurihara

Research output: Contribution to journalArticle

61 Citations (Scopus)

Abstract

The effect of MgADP on the sarcomere length (SL) dependence of tension generation was investigated using skinned rat ventricular trabeculae. Increasing SL from 1.9 to 2.3 microm decreased the muscle width by approximately 11% and shifted the midpoint of the pCa-tension relationship (pCa(50)) leftward by about 0.2 pCa units. MgADP (0.1, 1, and 5 mmol/L) augmented maximal and submaximal Ca(2+)-activated tension and concomitantly diminished the SL-dependent shift of pCa(50) in a concentration-dependent manner. In contrast, pimobendan, a Ca(2+) sensitizer, which promotes Ca(2+) binding to troponin C (TnC), exhibited no effect on the SL-dependent shift of pCa(50), suggesting that TnC does not participate in the modulation of SL-dependent tension generation by MgADP. At a SL of 1. 9 microm, osmotic compression, produced by 5% wt/vol dextran (molecular weight approximately 464 000), reduced the muscle width by approximately 13% and shifted pCa(50) leftward to a similar degree as that observed when increasing SL to 2.3 microm. This favors the idea that a decrease in the interfilament lattice spacing is the primary mechanism for SL-dependent tension generation. MgADP (5 mmol/L) markedly attenuated the dextran-induced shift of pCa(50), and the degree of attenuation was similar to that observed in a study of varying SL. The actomyosin-ADP complex (AM.ADP) induced by exogenous MgADP has been reported to cooperatively promote myosin attachment to the thin filament. We hereby conclude that the increase in the number of force-generating crossbridges on a decrease in the lattice spacing is masked by the cooperative effect of AM.ADP, resulting in depressed SL-dependent tension generation.

Original languageEnglish
JournalCirculation Research
Volume86
Issue number1
Publication statusPublished - 2000 Jan 7
Externally publishedYes

Fingerprint

Sarcomeres
Adenosine Diphosphate
Myocardium
Troponin C
Dextrans
Actomyosin
Muscles
Myosins
Molecular Weight

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine

Cite this

Effects of MgADP on length dependence of tension generation in skinned rat cardiac muscle. / Fukuda, N.; Kajiwara, H.; Ishiwata, S.; Kurihara, S.

In: Circulation Research, Vol. 86, No. 1, 07.01.2000.

Research output: Contribution to journalArticle

Fukuda, N, Kajiwara, H, Ishiwata, S & Kurihara, S 2000, 'Effects of MgADP on length dependence of tension generation in skinned rat cardiac muscle.', Circulation Research, vol. 86, no. 1.
Fukuda, N. ; Kajiwara, H. ; Ishiwata, S. ; Kurihara, S. / Effects of MgADP on length dependence of tension generation in skinned rat cardiac muscle. In: Circulation Research. 2000 ; Vol. 86, No. 1.
@article{f62a9a32de5141e5a5f6645059793721,
title = "Effects of MgADP on length dependence of tension generation in skinned rat cardiac muscle.",
abstract = "The effect of MgADP on the sarcomere length (SL) dependence of tension generation was investigated using skinned rat ventricular trabeculae. Increasing SL from 1.9 to 2.3 microm decreased the muscle width by approximately 11{\%} and shifted the midpoint of the pCa-tension relationship (pCa(50)) leftward by about 0.2 pCa units. MgADP (0.1, 1, and 5 mmol/L) augmented maximal and submaximal Ca(2+)-activated tension and concomitantly diminished the SL-dependent shift of pCa(50) in a concentration-dependent manner. In contrast, pimobendan, a Ca(2+) sensitizer, which promotes Ca(2+) binding to troponin C (TnC), exhibited no effect on the SL-dependent shift of pCa(50), suggesting that TnC does not participate in the modulation of SL-dependent tension generation by MgADP. At a SL of 1. 9 microm, osmotic compression, produced by 5{\%} wt/vol dextran (molecular weight approximately 464 000), reduced the muscle width by approximately 13{\%} and shifted pCa(50) leftward to a similar degree as that observed when increasing SL to 2.3 microm. This favors the idea that a decrease in the interfilament lattice spacing is the primary mechanism for SL-dependent tension generation. MgADP (5 mmol/L) markedly attenuated the dextran-induced shift of pCa(50), and the degree of attenuation was similar to that observed in a study of varying SL. The actomyosin-ADP complex (AM.ADP) induced by exogenous MgADP has been reported to cooperatively promote myosin attachment to the thin filament. We hereby conclude that the increase in the number of force-generating crossbridges on a decrease in the lattice spacing is masked by the cooperative effect of AM.ADP, resulting in depressed SL-dependent tension generation.",
author = "N. Fukuda and H. Kajiwara and S. Ishiwata and S. Kurihara",
year = "2000",
month = "1",
day = "7",
language = "English",
volume = "86",
journal = "Circulation Research",
issn = "0009-7330",
publisher = "Lippincott Williams and Wilkins",
number = "1",

}

TY - JOUR

T1 - Effects of MgADP on length dependence of tension generation in skinned rat cardiac muscle.

AU - Fukuda, N.

AU - Kajiwara, H.

AU - Ishiwata, S.

AU - Kurihara, S.

PY - 2000/1/7

Y1 - 2000/1/7

N2 - The effect of MgADP on the sarcomere length (SL) dependence of tension generation was investigated using skinned rat ventricular trabeculae. Increasing SL from 1.9 to 2.3 microm decreased the muscle width by approximately 11% and shifted the midpoint of the pCa-tension relationship (pCa(50)) leftward by about 0.2 pCa units. MgADP (0.1, 1, and 5 mmol/L) augmented maximal and submaximal Ca(2+)-activated tension and concomitantly diminished the SL-dependent shift of pCa(50) in a concentration-dependent manner. In contrast, pimobendan, a Ca(2+) sensitizer, which promotes Ca(2+) binding to troponin C (TnC), exhibited no effect on the SL-dependent shift of pCa(50), suggesting that TnC does not participate in the modulation of SL-dependent tension generation by MgADP. At a SL of 1. 9 microm, osmotic compression, produced by 5% wt/vol dextran (molecular weight approximately 464 000), reduced the muscle width by approximately 13% and shifted pCa(50) leftward to a similar degree as that observed when increasing SL to 2.3 microm. This favors the idea that a decrease in the interfilament lattice spacing is the primary mechanism for SL-dependent tension generation. MgADP (5 mmol/L) markedly attenuated the dextran-induced shift of pCa(50), and the degree of attenuation was similar to that observed in a study of varying SL. The actomyosin-ADP complex (AM.ADP) induced by exogenous MgADP has been reported to cooperatively promote myosin attachment to the thin filament. We hereby conclude that the increase in the number of force-generating crossbridges on a decrease in the lattice spacing is masked by the cooperative effect of AM.ADP, resulting in depressed SL-dependent tension generation.

AB - The effect of MgADP on the sarcomere length (SL) dependence of tension generation was investigated using skinned rat ventricular trabeculae. Increasing SL from 1.9 to 2.3 microm decreased the muscle width by approximately 11% and shifted the midpoint of the pCa-tension relationship (pCa(50)) leftward by about 0.2 pCa units. MgADP (0.1, 1, and 5 mmol/L) augmented maximal and submaximal Ca(2+)-activated tension and concomitantly diminished the SL-dependent shift of pCa(50) in a concentration-dependent manner. In contrast, pimobendan, a Ca(2+) sensitizer, which promotes Ca(2+) binding to troponin C (TnC), exhibited no effect on the SL-dependent shift of pCa(50), suggesting that TnC does not participate in the modulation of SL-dependent tension generation by MgADP. At a SL of 1. 9 microm, osmotic compression, produced by 5% wt/vol dextran (molecular weight approximately 464 000), reduced the muscle width by approximately 13% and shifted pCa(50) leftward to a similar degree as that observed when increasing SL to 2.3 microm. This favors the idea that a decrease in the interfilament lattice spacing is the primary mechanism for SL-dependent tension generation. MgADP (5 mmol/L) markedly attenuated the dextran-induced shift of pCa(50), and the degree of attenuation was similar to that observed in a study of varying SL. The actomyosin-ADP complex (AM.ADP) induced by exogenous MgADP has been reported to cooperatively promote myosin attachment to the thin filament. We hereby conclude that the increase in the number of force-generating crossbridges on a decrease in the lattice spacing is masked by the cooperative effect of AM.ADP, resulting in depressed SL-dependent tension generation.

UR - http://www.scopus.com/inward/record.url?scp=0034614288&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034614288&partnerID=8YFLogxK

M3 - Article

C2 - 10625312

AN - SCOPUS:0034614288

VL - 86

JO - Circulation Research

JF - Circulation Research

SN - 0009-7330

IS - 1

ER -