Eigenvalue problem for fully nonlinear second-order elliptic PDE on balls

Norihisa Ikoma, Hitoshi Ishii

    Research output: Contribution to journalArticle

    8 Citations (Scopus)

    Abstract

    We study the eigenvalue problem for positively homogeneous, of degree one, elliptic ODE on finite intervals and PDE on balls. We establish the existence and completeness results for principal and higher eigenpairs, i.e., pairs of an eigenvalue and its corresponding eigenfunction.

    Original languageEnglish
    Pages (from-to)783-812
    Number of pages30
    JournalAnnales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis
    Volume29
    Issue number5
    DOIs
    Publication statusPublished - 2012 Sep

    Fingerprint

    Elliptic PDE
    Fully Nonlinear
    Eigenvalues and eigenfunctions
    Eigenvalue Problem
    Eigenfunctions
    Completeness
    Ball
    Eigenvalue
    Interval

    ASJC Scopus subject areas

    • Analysis
    • Mathematical Physics

    Cite this

    Eigenvalue problem for fully nonlinear second-order elliptic PDE on balls. / Ikoma, Norihisa; Ishii, Hitoshi.

    In: Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis, Vol. 29, No. 5, 09.2012, p. 783-812.

    Research output: Contribution to journalArticle

    @article{d8ef6d9c4b244a66a6be52b1157dd460,
    title = "Eigenvalue problem for fully nonlinear second-order elliptic PDE on balls",
    abstract = "We study the eigenvalue problem for positively homogeneous, of degree one, elliptic ODE on finite intervals and PDE on balls. We establish the existence and completeness results for principal and higher eigenpairs, i.e., pairs of an eigenvalue and its corresponding eigenfunction.",
    author = "Norihisa Ikoma and Hitoshi Ishii",
    year = "2012",
    month = "9",
    doi = "10.1016/j.anihpc.2012.04.004",
    language = "English",
    volume = "29",
    pages = "783--812",
    journal = "Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis",
    issn = "0294-1449",
    publisher = "Elsevier Masson SAS",
    number = "5",

    }

    TY - JOUR

    T1 - Eigenvalue problem for fully nonlinear second-order elliptic PDE on balls

    AU - Ikoma, Norihisa

    AU - Ishii, Hitoshi

    PY - 2012/9

    Y1 - 2012/9

    N2 - We study the eigenvalue problem for positively homogeneous, of degree one, elliptic ODE on finite intervals and PDE on balls. We establish the existence and completeness results for principal and higher eigenpairs, i.e., pairs of an eigenvalue and its corresponding eigenfunction.

    AB - We study the eigenvalue problem for positively homogeneous, of degree one, elliptic ODE on finite intervals and PDE on balls. We establish the existence and completeness results for principal and higher eigenpairs, i.e., pairs of an eigenvalue and its corresponding eigenfunction.

    UR - http://www.scopus.com/inward/record.url?scp=84866731936&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84866731936&partnerID=8YFLogxK

    U2 - 10.1016/j.anihpc.2012.04.004

    DO - 10.1016/j.anihpc.2012.04.004

    M3 - Article

    AN - SCOPUS:84866731936

    VL - 29

    SP - 783

    EP - 812

    JO - Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis

    JF - Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis

    SN - 0294-1449

    IS - 5

    ER -