Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes

John C. Bachman, Reza Kavian, Daniel J. Graham, Dong Young Kim, Suguru Noda, Daniel G. Nocera, Yang Shao-Horn, Seung Woo Lee

    Research output: Contribution to journalArticle

    35 Citations (Scopus)

    Abstract

    Electrochemical energy-storage devices have the potential to be clean and efficient, but their current cost and performance limit their use in numerous transportation and stationary applications. Many organic molecules are abundant, economical and electrochemically active; if selected correctly and rationally designed, these organic molecules offer a promising route to expand the applications of these energy-storage devices. In this study, polycyclic aromatic hydrocarbons are introduced within a functionalized few-walled carbon nanotube matrix to develop high-energy, high-power positive electrodes for pseudocapacitor applications. The reduction potential and capacity of various polycyclic aromatic hydrocarbons are correlated with their interaction with the functionalized few-walled carbon nanotube matrix, chemical configuration and electronic structure. These findings provide rational design criteria for nanostructured organic electrodes. When combined with lithium negative electrodes, these nanostructured organic electrodes exhibit energy densities of ∼350Whkg<inf>electrode</inf><sup>-1</sup> at power densities of ∼10kWkg<inf>electrode</inf><sup>-1</sup> for over 10,000 cycles.

    Original languageEnglish
    Article numberA8040
    JournalNature Communications
    Volume6
    DOIs
    Publication statusPublished - 2015 May 6

      Fingerprint

    ASJC Scopus subject areas

    • Biochemistry, Genetics and Molecular Biology(all)
    • Chemistry(all)
    • Physics and Astronomy(all)

    Cite this

    Bachman, J. C., Kavian, R., Graham, D. J., Young Kim, D., Noda, S., Nocera, D. G., Shao-Horn, Y., & Lee, S. W. (2015). Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes. Nature Communications, 6, [A8040]. https://doi.org/10.1038/ncomms8040