TY - GEN
T1 - End-to-end ASR to jointly predict transcriptions and linguistic annotations
AU - Omachi, Motoi
AU - Fujita, Yuya
AU - Watanabe, Shinji
AU - Wiesner, Matthew
N1 - Publisher Copyright:
© 2021 Association for Computational Linguistics.
PY - 2021
Y1 - 2021
N2 - We propose a Transformer-based sequence-to-sequence model for automatic speech recognition (ASR) capable of simultaneously transcribing and annotating audio with linguistic information such as phonemic transcripts or part-of-speech (POS) tags. Since linguistic information is important in natural language processing (NLP), the proposed ASR is especially useful for speech interface applications, including spoken dialogue systems and speech translation, which combine ASR and NLP. To produce linguistic annotations, we train the ASR system using modified training targets: each grapheme or multi-grapheme unit in the target transcript is followed by an aligned phoneme sequence and/or POS tag. Since our method has access to the underlying audio data, we can estimate linguistic annotations more accurately than pipeline approaches in which NLP-based methods are applied to a hypothesized ASR transcript. Experimental results on Japanese and English datasets show that the proposed ASR system is capable of simultaneously producing high-quality transcriptions and linguistic annotations.
AB - We propose a Transformer-based sequence-to-sequence model for automatic speech recognition (ASR) capable of simultaneously transcribing and annotating audio with linguistic information such as phonemic transcripts or part-of-speech (POS) tags. Since linguistic information is important in natural language processing (NLP), the proposed ASR is especially useful for speech interface applications, including spoken dialogue systems and speech translation, which combine ASR and NLP. To produce linguistic annotations, we train the ASR system using modified training targets: each grapheme or multi-grapheme unit in the target transcript is followed by an aligned phoneme sequence and/or POS tag. Since our method has access to the underlying audio data, we can estimate linguistic annotations more accurately than pipeline approaches in which NLP-based methods are applied to a hypothesized ASR transcript. Experimental results on Japanese and English datasets show that the proposed ASR system is capable of simultaneously producing high-quality transcriptions and linguistic annotations.
UR - http://www.scopus.com/inward/record.url?scp=85128683817&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85128683817&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85128683817
T3 - NAACL-HLT 2021 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference
SP - 1861
EP - 1871
BT - NAACL-HLT 2021 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics
PB - Association for Computational Linguistics (ACL)
T2 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021
Y2 - 6 June 2021 through 11 June 2021
ER -