Abstract
We recently reported that enzyme-treated asparagus extract (ETAS) attenuates hydrogen peroxide (H2O2)-stimulated matrix metalloproteinase-9 expression in skin fibroblast L929 cells. To further elucidate the anti-aging effects of ETAS on skin, we examined whether ETAS has preventive effects on H2O2-induced pro-inflammatory responses of skin fibroblasts. H2O2 induced Ser536 phosphorylation and nuclear accumulation of nuclear factor-κB (NF-κB) p65, and increased the mRNA levels of interleukin-12α (IL-12α) and inducible nitric oxide synthase (iNOS) in L929 cells. Pretreatment of the cells with JSH-23, an inhibitor of NF-κB nuclear translocation, abolished the H2O2-induced expression of IL-12α and iNOS, indicating that the increased transcription is regulated by p65. The H2O2-stimulated nuclear accumulation of p65 and induction of IL-12α and iNOS mRNA were significantly attenuated after pretreatment with ETAS for 3 h, and these responses were completely abolished when the duration was extended to 24 h. However, ETAS did not affect the H2O2-stimulated degradation of IκBα and phosphorylation of p65. On the other hand, ETAS treatment for 24 h resulted in decreased protein levels of importin-α. These results suggest that ETAS prevents pro-inflammatory responses by suppressing the p65 nuclear translocation in skin fibroblasts induced by H2O2.
Original language | English |
---|---|
Pages (from-to) | 1883-1888 |
Number of pages | 6 |
Journal | Natural Product Communications |
Volume | 11 |
Issue number | 12 |
Publication status | Published - 2016 |
Keywords
- Enzyme-treated asparagus extract
- Inflammation
- Nuclear factor-κB signaling
- Oxidative stress
- Skin fibroblast
ASJC Scopus subject areas
- Medicine(all)
- Pharmacology
- Plant Science
- Drug Discovery
- Complementary and alternative medicine