Epitaxial Combination of Two-Dimensional Hexagonal Boron Nitride with Single-Crystalline Diamond Substrate

Xu Yang, Markus Pristovsek, Shugo Nitta, Yuhuai Liu, Yoshio Honda, Yasuo Koide, Hiroshi Kawarada, Hiroshi Amano

Research output: Contribution to journalArticlepeer-review

Abstract

Hexagonal boron nitride (hBN) and diamond are promising materials for next-generation electronics and optoelectronics. However, their combination is rarely reported. In this study, we for the first time demonstrate the success to direct growth of two-dimensional (2D) hBN crystal layers on diamond substrates by metalorganic vapor phase epitaxy. Compared with the disordered growth we found on diamond (100), atomic force microscopy, X-ray diffraction, and transmission electron microscopy results all support 2D hBN with highly oriented lattice formation on diamond (111). Also, the epitaxial relationship between hBN and diamond (111) substrate is revealed to be [0 0 0 1]hBN // [1 1 1]diamond and [1 0 1̅ 0]hBN // [1 1 2̅]diamond. The valence band offset at hBN/diamond (111) heterointerface determined by X-ray photoelectron spectroscopy is 1.4 ± 0.2 eV, thus yielding a conduction band offset of 1.0 ± 0.2 eV and type II staggered band alignment with a bandgap of 5.9 eV assumed for hBN. Furthermore, prior thermal cleaning of diamond in a pure H2 atmosphere smoothens the surface for well-ordered layered hBN epitaxy, while thermal cleaning in a mixed H2 and NH3 atmosphere etches the diamond surface, creating many small faceted pits that destroy the following epitaxy of hBN.

Original languageEnglish
Pages (from-to)46466-46475
Number of pages10
JournalACS applied materials & interfaces
Volume12
Issue number41
DOIs
Publication statusPublished - 2020 Oct 14

Keywords

  • 2D
  • MOVPE
  • diamond
  • hexagonal boron nitride
  • single-crystalline

ASJC Scopus subject areas

  • Materials Science(all)

Fingerprint Dive into the research topics of 'Epitaxial Combination of Two-Dimensional Hexagonal Boron Nitride with Single-Crystalline Diamond Substrate'. Together they form a unique fingerprint.

Cite this