Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon

Takuro Fujii, Tomonari Sato, Koji Takeda, Koichi Hasebe, Takaaki Kakitsuka, Shinji Matsuo

Research output: Contribution to journalArticle

34 Citations (Scopus)

Abstract

The authors have developed a new heterogeneous-integration method for fabricating semiconductor lasers with high modulation efficiency on Si substrates. The method employs the direct bonding of an InP-based active layer to the SiO2 layer of a thermally oxidised Si substrate (SiO2/Si substrate), followed by the epitaxial growth of InP to form a buried heterostructure (BH). By using the InP membrane, the authors realise epitaxial growth of an InP on the InP membrane directly bonded to Si without crystal quality degradation. Both a theoretical estimation and photoluminescence measurements revealed that the total laser thickness must be less than the critical thickness determined by the applied thermal strain. The authors confirmed that the crystal quality of the BH is comparable to that fabricated on an InP substrate when using a 250-nm-thick InP-based membrane. A distributed feedback laser fabricated on a SiO2/Si substrate exhibited continuous-wave operation up to 100°C and was directly modulated by a 40 Gbit/s non-return-tozero signal with a bias current of 15 mA. These results indicate that epitaxial growth using a directly bonded InP-based active layer on a SiO2/Si substrate allows us to achieve lasers with high modulation efficiency and to use a large-scale Si wafer as a fabrication platform, resulting in low-cost fabrication.

Original languageEnglish
Pages (from-to)151-157
Number of pages7
JournalIET Optoelectronics
Volume9
Issue number4
DOIs
Publication statusPublished - 2015 Aug 1
Externally publishedYes

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Epitaxial growth of InP to bury directly bonded thin active layer on SiO<sub>2</sub>/Si substrate for fabricating distributed feedback lasers on silicon'. Together they form a unique fingerprint.

  • Cite this