Establishment of labo-in-a-microdroplet for azo compound synthesis

Daiki Tanaka, Shunsuke Sawai, Takuo Sugaya, Yoshito Nozaki, Dong Hyun Yoon, Taisuke Isano, Hitoshi Yamagata, Hiroyuki Fujita, Tetsushi Sekiguchi, Takashiro Akitsu, Shuichi Shoji

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this study, microdroplets are regarded as a “small laboratory”, and complex chemical azo compound was firstly synthesis. The synthesis of azo compounds requires accurate pH control. Furthermore, the reaction is accompanied by heat generation. Synthesis applying microdroplets has advantages over temperature control (ice cold→room temperature (23℃)), pH reagent concentration (5.62 molL-1→0.50 molL-1), synthesis time (3,600 sec→4 sec), and recrystallization work was not necessary. The microdroplet rapidly released heat and no side reaction due to heat occurred. The microdroplet method enables accurate pH control and enables highly pure synthesis.

Original languageEnglish
Title of host publication23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2019
PublisherChemical and Biological Microsystems Society
Pages538-539
Number of pages2
ISBN (Electronic)9781733419000
Publication statusPublished - 2019
Event23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2019 - Basel, Switzerland
Duration: 2019 Oct 272019 Oct 31

Publication series

Name23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2019

Conference

Conference23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2019
CountrySwitzerland
CityBasel
Period19/10/2719/10/31

Keywords

  • Azo-compound
  • Chemical synthesis
  • Microdroplet
  • PH-control

ASJC Scopus subject areas

  • Bioengineering
  • Chemical Engineering (miscellaneous)

Fingerprint Dive into the research topics of 'Establishment of labo-in-a-microdroplet for azo compound synthesis'. Together they form a unique fingerprint.

Cite this