Evaluation and intercomparison of downscaled daily precipitation indices over Japan in present-day climate

Strengths and weaknesses of dynamical and bias correction-type statistical downscaling methods

Toshichika Iizumi, Motoki Nishimori, Koji Dairaku, Sachiho A. Adachi, Masayuki Yokosawa

Research output: Contribution to journalArticle

52 Citations (Scopus)

Abstract

In this study, we evaluate the accuracy of four regional climate models (NHRCM, NRAMS, TRAMS, and TWRF) and one bias correction-type statistical model (CDFDM) for daily precipitation indices under the present-day climate (1985-2004) over Japan on a 20 km grid interval. The evaluated indices are (1) mean precipitation, (2) number of days with precipitation 1 mm/d (corresponds to number of wet days), (3) mean amount per wet day, (4) 90th percentile of daily precipitation, and (5) number of days with precipitation 90th percentile of daily precipitation. The boundary conditions of the dynamical models and the predictors of the statistical model are given from the single reanalysis data, i.e., JRA25. Both types of models successfully improved the accuracy of the indices relative to the reanalysis data in terms of bias, seasonal cycle, geographical pattern, cumulative distribution function of wet-day amount, and interannual variation pattern. In most aspects, NHRCM is the best model of all indices. Through the intercomparison between the dynamical and statistical models, respective strengths and weaknesses emerged. Briefly, (1) many dynamical models simulate too many wet days with a small amount of precipitation in humid climate zones, such as summer in Japan, relative to the statistical model, unless the cumulus convection scheme improved for such a condition is incorporated; (2) a few dynamical models can derive a better high-order percentile of daily precipitation (e.g., 90th percentile) than the statistical model; (3) both the dynamical and statistical models are still insufficient in the representation of the interannual variation pattern of the number of days with precipitation 90th percentile of daily precipitation; (4) the statistical model is comparable to the dynamical models in the long-term mean geographical pattern of the indices even on a 20 km grid interval if a dense observation network is applicable; (5) the statistical model is less accurate than the dynamical models in the temporal variation pattern due to the strong dependence of the predictand on the relatively less accurate predictor (daily reanalysis precipitation); and (6) the simple statistical model is less plausible in the physical sense because of the oversimplification of underlying physical processes compared to the dynamical models and more sophisticated statistical models.

Original languageEnglish
Article numberD01111
JournalJournal of Geophysical Research Atmospheres
Volume116
Issue number1
DOIs
Publication statusPublished - 2011
Externally publishedYes

Fingerprint

downscaling
statistical models
climate
Japan
Statistical methods
statistical analysis
evaluation
method
index
Statistical Models
cumulative distribution
Climate models
humid zones
annual variations
climate models
annual variation
Distribution functions
temporal variation
grids
intervals

ASJC Scopus subject areas

  • Geophysics
  • Oceanography
  • Forestry
  • Ecology
  • Aquatic Science
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Cite this

@article{03fd2740a08f42e9b394937c9b66499a,
title = "Evaluation and intercomparison of downscaled daily precipitation indices over Japan in present-day climate: Strengths and weaknesses of dynamical and bias correction-type statistical downscaling methods",
abstract = "In this study, we evaluate the accuracy of four regional climate models (NHRCM, NRAMS, TRAMS, and TWRF) and one bias correction-type statistical model (CDFDM) for daily precipitation indices under the present-day climate (1985-2004) over Japan on a 20 km grid interval. The evaluated indices are (1) mean precipitation, (2) number of days with precipitation 1 mm/d (corresponds to number of wet days), (3) mean amount per wet day, (4) 90th percentile of daily precipitation, and (5) number of days with precipitation 90th percentile of daily precipitation. The boundary conditions of the dynamical models and the predictors of the statistical model are given from the single reanalysis data, i.e., JRA25. Both types of models successfully improved the accuracy of the indices relative to the reanalysis data in terms of bias, seasonal cycle, geographical pattern, cumulative distribution function of wet-day amount, and interannual variation pattern. In most aspects, NHRCM is the best model of all indices. Through the intercomparison between the dynamical and statistical models, respective strengths and weaknesses emerged. Briefly, (1) many dynamical models simulate too many wet days with a small amount of precipitation in humid climate zones, such as summer in Japan, relative to the statistical model, unless the cumulus convection scheme improved for such a condition is incorporated; (2) a few dynamical models can derive a better high-order percentile of daily precipitation (e.g., 90th percentile) than the statistical model; (3) both the dynamical and statistical models are still insufficient in the representation of the interannual variation pattern of the number of days with precipitation 90th percentile of daily precipitation; (4) the statistical model is comparable to the dynamical models in the long-term mean geographical pattern of the indices even on a 20 km grid interval if a dense observation network is applicable; (5) the statistical model is less accurate than the dynamical models in the temporal variation pattern due to the strong dependence of the predictand on the relatively less accurate predictor (daily reanalysis precipitation); and (6) the simple statistical model is less plausible in the physical sense because of the oversimplification of underlying physical processes compared to the dynamical models and more sophisticated statistical models.",
author = "Toshichika Iizumi and Motoki Nishimori and Koji Dairaku and Adachi, {Sachiho A.} and Masayuki Yokosawa",
year = "2011",
doi = "10.1029/2010JD014513",
language = "English",
volume = "116",
journal = "Journal of Geophysical Research: Space Physics",
issn = "2169-9313",
publisher = "American Geophysical Union",
number = "1",

}

TY - JOUR

T1 - Evaluation and intercomparison of downscaled daily precipitation indices over Japan in present-day climate

T2 - Strengths and weaknesses of dynamical and bias correction-type statistical downscaling methods

AU - Iizumi, Toshichika

AU - Nishimori, Motoki

AU - Dairaku, Koji

AU - Adachi, Sachiho A.

AU - Yokosawa, Masayuki

PY - 2011

Y1 - 2011

N2 - In this study, we evaluate the accuracy of four regional climate models (NHRCM, NRAMS, TRAMS, and TWRF) and one bias correction-type statistical model (CDFDM) for daily precipitation indices under the present-day climate (1985-2004) over Japan on a 20 km grid interval. The evaluated indices are (1) mean precipitation, (2) number of days with precipitation 1 mm/d (corresponds to number of wet days), (3) mean amount per wet day, (4) 90th percentile of daily precipitation, and (5) number of days with precipitation 90th percentile of daily precipitation. The boundary conditions of the dynamical models and the predictors of the statistical model are given from the single reanalysis data, i.e., JRA25. Both types of models successfully improved the accuracy of the indices relative to the reanalysis data in terms of bias, seasonal cycle, geographical pattern, cumulative distribution function of wet-day amount, and interannual variation pattern. In most aspects, NHRCM is the best model of all indices. Through the intercomparison between the dynamical and statistical models, respective strengths and weaknesses emerged. Briefly, (1) many dynamical models simulate too many wet days with a small amount of precipitation in humid climate zones, such as summer in Japan, relative to the statistical model, unless the cumulus convection scheme improved for such a condition is incorporated; (2) a few dynamical models can derive a better high-order percentile of daily precipitation (e.g., 90th percentile) than the statistical model; (3) both the dynamical and statistical models are still insufficient in the representation of the interannual variation pattern of the number of days with precipitation 90th percentile of daily precipitation; (4) the statistical model is comparable to the dynamical models in the long-term mean geographical pattern of the indices even on a 20 km grid interval if a dense observation network is applicable; (5) the statistical model is less accurate than the dynamical models in the temporal variation pattern due to the strong dependence of the predictand on the relatively less accurate predictor (daily reanalysis precipitation); and (6) the simple statistical model is less plausible in the physical sense because of the oversimplification of underlying physical processes compared to the dynamical models and more sophisticated statistical models.

AB - In this study, we evaluate the accuracy of four regional climate models (NHRCM, NRAMS, TRAMS, and TWRF) and one bias correction-type statistical model (CDFDM) for daily precipitation indices under the present-day climate (1985-2004) over Japan on a 20 km grid interval. The evaluated indices are (1) mean precipitation, (2) number of days with precipitation 1 mm/d (corresponds to number of wet days), (3) mean amount per wet day, (4) 90th percentile of daily precipitation, and (5) number of days with precipitation 90th percentile of daily precipitation. The boundary conditions of the dynamical models and the predictors of the statistical model are given from the single reanalysis data, i.e., JRA25. Both types of models successfully improved the accuracy of the indices relative to the reanalysis data in terms of bias, seasonal cycle, geographical pattern, cumulative distribution function of wet-day amount, and interannual variation pattern. In most aspects, NHRCM is the best model of all indices. Through the intercomparison between the dynamical and statistical models, respective strengths and weaknesses emerged. Briefly, (1) many dynamical models simulate too many wet days with a small amount of precipitation in humid climate zones, such as summer in Japan, relative to the statistical model, unless the cumulus convection scheme improved for such a condition is incorporated; (2) a few dynamical models can derive a better high-order percentile of daily precipitation (e.g., 90th percentile) than the statistical model; (3) both the dynamical and statistical models are still insufficient in the representation of the interannual variation pattern of the number of days with precipitation 90th percentile of daily precipitation; (4) the statistical model is comparable to the dynamical models in the long-term mean geographical pattern of the indices even on a 20 km grid interval if a dense observation network is applicable; (5) the statistical model is less accurate than the dynamical models in the temporal variation pattern due to the strong dependence of the predictand on the relatively less accurate predictor (daily reanalysis precipitation); and (6) the simple statistical model is less plausible in the physical sense because of the oversimplification of underlying physical processes compared to the dynamical models and more sophisticated statistical models.

UR - http://www.scopus.com/inward/record.url?scp=78751512489&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78751512489&partnerID=8YFLogxK

U2 - 10.1029/2010JD014513

DO - 10.1029/2010JD014513

M3 - Article

VL - 116

JO - Journal of Geophysical Research: Space Physics

JF - Journal of Geophysical Research: Space Physics

SN - 2169-9313

IS - 1

M1 - D01111

ER -