Evaluation and prediction of blade-passing frequency noise generated by a centrifugal blower

Yutaka Ota, Eleuke Outa, Klyohiro Tajima

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Abstract

    The blade-passing frequency noise, abbreviated to BPF noise, of low specific speed centrifugal blower is analyzed by separating the frequency-response of the transmission passage and the intensity of the noise source. Frequency-response has previously been evaluated by the authors using a onedimensional linear wave model, and the results have agreed well with the experimental response in a practical range of the blower speed. In the present study, the intensity of the noise source is estimated by introducing the quasi-steady model of the blade wake impingement on the scroll surface. The effective location of the noise source is determined by analyzing the cross-correlation between measured data of the blower suction noise and pressure fluctuation on the scroll surface. Then, the surface density distribution of a dipole noise source is determined from pressure fluctuation expressed in terms of quasi-steady dynamic pressure of the traveling blade wake. Finally, the free-field noise level is predicted by integrating the density spectrum of the noise source over the effective source area The sound pressure level of the blower suction noise is easily predicted by multiplying the free-field noise level by the frequency-response characteristics of the noise transmission passage.

    Original languageEnglish
    Title of host publicationProceedings of the ASME Turbo Expo
    PublisherAmerican Society of Mechanical Engineers (ASME)
    Volume1
    ISBN (Print)9780791878835
    DOIs
    Publication statusPublished - 1994
    EventASME 1994 International Gas Turbine and Aeroengine Congress and Exposition, GT 1994 - The Hague, Netherlands
    Duration: 1994 Jun 131994 Jun 16

    Other

    OtherASME 1994 International Gas Turbine and Aeroengine Congress and Exposition, GT 1994
    CountryNetherlands
    CityThe Hague
    Period94/6/1394/6/16

    ASJC Scopus subject areas

    • Engineering(all)

    Fingerprint Dive into the research topics of 'Evaluation and prediction of blade-passing frequency noise generated by a centrifugal blower'. Together they form a unique fingerprint.

  • Cite this

    Ota, Y., Outa, E., & Tajima, K. (1994). Evaluation and prediction of blade-passing frequency noise generated by a centrifugal blower. In Proceedings of the ASME Turbo Expo (Vol. 1). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/94-GT-334