Experiments and numerical simulations on local degradation characteristics of coated conductor due to overcurrent

Xudong Wang*, Tao Wang, Atsushi Ishiyama, Masashi Yagi, Osamu Maruyama, Takeshi Ohkuma

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


Coated conductors are subjected to short-circuit currents 10 to 30 times greater than the operating current in the use of superconducting power cables. The c and thickness of the stabilizer are considered to be nonuniformly distributed in the real manufacturing process. Thus, the coated conductor may be damaged locally by the hot spot due to the overcurrent. Therefore, it is important to clarify the local degradation characteristics of the coated conductor and determine its tolerance against the fault current in the actual operation. In a previous study, overcurrent experiments and numerical simulations on thermal stress-strain were carried out on a coated conductor with a nonuniformly distributed Ic. In this study, two samples with nonuniformly distributed copper plating thickness were tested. Numerical simulations based on the finite element method were performed to simulate the temperature and thermal stress-strain distribution caused by the overcurrent. The nonuniform thickness of the copper plating and the longitudinal length of the nonuniform area were considered as the simulation parameters.

Original languageEnglish
Article number6407834
JournalIEEE Transactions on Applied Superconductivity
Issue number3
Publication statusPublished - 2013


  • Degradation
  • finite element method
  • short circuit current
  • thermal stress

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Experiments and numerical simulations on local degradation characteristics of coated conductor due to overcurrent'. Together they form a unique fingerprint.

Cite this