Fabrication of Electrodeposited FeCuPt Nanodot Arrays Toward L10 Ordering

Siggi Wodarz, Shogo Hashimoto, Mana Kambe, Giovanni Zangari, Takayuki Homma

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

FeCuPt nanodot arrays were fabricated by electrodeposition onto a nanopore patterned substrate fabricated by electron beam lithography (EBL), for the purpose to manufacture and characterize model bit-patterned media. Addition of Cu to FePt was carried out to accelerate the phase transformation of FePt into the L10 -ordered phase in order to fabricate nanodot arrays with hard and uniform magnetic properties. Composition of the FeCuPt ternary alloy films was optimized by varying applied potential and CuSO4 concentration to form single L10 phase (40-50 at% Pt and 25 at% Cu). Annealing at 450 °C resulted in the phase transformation from fcc to L10 in FeCuPt ternary alloy films, whereas FePt binary alloy films did not show a phase transformation. Perpendicular coercivities of FeCuPt and FePt were 6 and 1 kOe, respectively, annealing at 450 °C, indicating the formation of the L10 phase with lower annealing temperature by Cu incorporation. FeCuPt nanodot arrays with 20 nm in diameter and 35 nm in pitch were successfully fabricated with the nanopore patterned substrate fabricated by EBL. In addition, cross-sectional transmission electron microscope analysis of FeCuPt nanodot arrays showed clear stacking of the L10 (111) lattice in a perpendicular direction through the growth direction having a single crystal nature, whereas phase transformation was insufficient with FePt nanodot arrays. The collective results have successfully demonstrated the electrochemical fabrication of ultra-fine FePt nanodot arrays with L10 structure by promoting L10 ordering with Cu additions.

Original languageEnglish
Article number8022961
JournalIEEE Transactions on Magnetics
Volume54
Issue number2
DOIs
Publication statusPublished - 2018 Feb

Keywords

  • Bit-patterned media (BPM)
  • FePt alloy
  • electrodeposition
  • nanodot array

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Fabrication of Electrodeposited FeCuPt Nanodot Arrays Toward L1<sub>0</sub> Ordering'. Together they form a unique fingerprint.

Cite this