Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces.

Tatsuya Shimizu, Masayuki Yamato, Yuki Isoi, Takumitsu Akutsu, Takeshi Setomaru, Kazuhiko Abe, Akihiko Kikuchi, Mitsuo Umezu, Teruo Okano

Research output: Contribution to journalArticle

743 Citations (Scopus)

Abstract

Recent progress in cell transplantation therapy to repair impaired hearts has encouraged further attempts to bioengineer 3-dimensional (3-D) heart tissue from cultured cardiomyocytes. Cardiac tissue engineering is currently pursued utilizing conventional technology to fabricate 3-D biodegradable scaffolds as a temporary extracellular matrix. By contrast, new methods are now described to fabricate pulsatile cardiac grafts using new technology that layers cell sheets 3-dimensionally. We apply novel cell culture surfaces grafted with temperature-responsive polymer, poly(N-isopropylacrylamide) (PIPAAm), from which confluent cells detach as a cell sheet simply by reducing temperature without any enzymatic treatments. Neonatal rat cardiomyocyte sheets detached from PIPAAm-grafted surfaces were overlaid to construct cardiac grafts. Layered cell sheets began to pulse simultaneously and morphological communication via connexin43 was established between the sheets. When 4 sheets were layered, engineered constructs were macroscopically observed to pulse spontaneously. In vivo, layered cardiomyocyte sheets were transplanted into subcutaneous tissues of nude rats. Three weeks after transplantation, surface electrograms originating from transplanted grafts were detected and spontaneous beating was macroscopically observed. Histological studies showed characteristic structures of heart tissue and multiple neovascularization within contractile tissues. Constructs transplanted into 3-week-old rats exhibited more cardiomyocyte hypertrophy and less connective tissue than those placed into 8-week-old rats. Long-term survival of pulsatile cardiac grafts was confirmed up to 12 weeks. These results demonstrate that electrically communicative pulsatile 3-D cardiac constructs were achieved both in vitro and in vivo by layering cardiomyocyte sheets. Cardiac tissue engineering based on this technology may prove useful for heart model fabrication and cardiovascular tissue repair. The full text of this article is available at http://www.circresaha.org.

Original languageEnglish
Pages (from-to)e40
JournalCirculation research
Volume90
Issue number3
DOIs
Publication statusPublished - 2002 Feb 22

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine

Fingerprint Dive into the research topics of 'Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces.'. Together they form a unique fingerprint.

  • Cite this