FAST-PAIRWISE COLLECTIVE NEUTRINO OSCILLATIONS ASSOCIATED WITH ASYMMETRIC NEUTRINO EMISSIONS IN CORE-COLLAPSE SUPERNOVA

Hiroki Nagakura, Taiki Morinaga, Chinami Kato, Shoichi Yamada

Research output: Contribution to journalArticlepeer-review

Abstract

We present a linear stability analysis of the fast-pairwise neutrino flavor conversion based on a result of our latest axisymmetric core-collapse supernova (CCSN) simulation with full Boltzmann neutrino transport. In the CCSN simulation, coherent asymmetric neutrino emissions of electron-type neutrinos (νe) and their anti-particles (¯ νe), in which the asymmetry of νe and ν¯e is anti-correlated with each other, occur at almost the same time as the onset of aspherical shock expansion. We find that the asymmetric neutrino emissions play a crucial role on occurrences of fast flavor conversions. The linear analysis shows that unstable modes appear in both pre- and post-shock flows; for the latter they appear only in the hemisphere of higher ν¯e emissions (the same hemisphere with stronger shock expansion). We analyze in depth the characteristics of electron-lepton-number (ELN) crossing by closely inspecting the angular distributions of neutrinos in momentum space. The ELN crossing happens in various ways, and the property depends on the radius: in the vicinity of neutron star, ν¯ee) dominates over νe (¯ νe) in the forward (backward) direction: at the larger radius the ELN crossing occurs in the opposite way. We also find that the non-radial ELN crossing occurs at the boundary between no ELN crossing and the radial one, which is an effect of genuine multi-D transport. Our findings indicate that the collective neutrino oscillation may occur more commonly in CCSNe and suggest that the CCSN community needs to accommodate these oscillations self-consistently in the modelling of CCSNe.

Original languageEnglish
JournalUnknown Journal
Publication statusPublished - 2019 Oct 9

Keywords

  • Supernovae: general—neutrinos—radiative transfer—hydrodynamics

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'FAST-PAIRWISE COLLECTIVE NEUTRINO OSCILLATIONS ASSOCIATED WITH ASYMMETRIC NEUTRINO EMISSIONS IN CORE-COLLAPSE SUPERNOVA'. Together they form a unique fingerprint.

Cite this