Feedforward impedance control efficiently reduce motor variability

Rieko Osu, Ken ichi Morishige, Hiroyuki Miyamoto, Mitsuo Kawato

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Despite the existence of neural noise, which leads variability in motor commands, the central nervous system can effectively reduce movement variance at the end effector to meet task requirements. Although online correction based on feedback information is essential for reducing error, feedforward impedance control is another way to regulate motor variability. This Update Article reviews key studies examining the relation between task constraints and impedance control for human arm movement. When a smaller reaching target is given as a task constraint, flexor and extensor muscles are co-activated, and positional variance is decreased around the task constraint. Trial-by-trial muscle activations revealed no on-line feedback correction, indicating that humans are able to regulate their impedance in advance. These results demonstrate that not only on-line feedback correction, but also feedforward impedance control, helps reduce the motor variability caused by internal noise to realize dexterous movements of human arms. A computational model of movement planning considering the presence of signal-dependent noise provides a unifying framework that potentially accounts for optimizing impedance to maximize accuracy. A recently proposed learning algorism formulated as a V-shaped learning function explains how the central nervous system acquires impedance to optimize accuracy as well as stability and efficiency.

Original languageEnglish
Pages (from-to)6-10
Number of pages5
JournalNeuroscience Research
Volume65
Issue number1
DOIs
Publication statusPublished - 2009 Sep 1
Externally publishedYes

Keywords

  • EMG
  • Feedback
  • Human arm movement
  • Learning
  • Signal dependent noise
  • Stiffness

ASJC Scopus subject areas

  • Neuroscience(all)

Fingerprint Dive into the research topics of 'Feedforward impedance control efficiently reduce motor variability'. Together they form a unique fingerprint.

  • Cite this