Ferro-and antiferromagnetic coupling switch accompanied by twist deformation around the copper(II) and nitroxide coordination bond

Atsushi Okazawa, Daisuke Hashizume, Takayuki Ishida*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

61 Citations (Scopus)

Abstract

Two novel copper(II) complexes with tert-butyl 2-pyridyl nitroxide (2pyNO·), [Cu2+(2pyNO-)(2pyNO ·)]2(BF4-)2 (1·BF4) and [Cu2+(2pyNO-)(2pyNO ·)]2(ClO4-)2 (1·ClO4), were prepared and structurally characterized. They contained mixed-valent ligands from 2pyNO, whose oxygen atoms were located at equatorial positions of the copper ion. The [Cu2+(2pyNO -)(2pyNO·)] unit was dimerized by μ-oxo bridges of the anion ligand, giving a zigzag linear spin system involving four paramagnetic S = 1/2 centers. The two compounds are isomorphous in an orthorhombic Pbca space group. Magnetic study revealed that 1·ClO 4 showed ferromagnetic copper-radical coupling in all temperature ranges investigated here. On the other hand, 1·BF4 exhibited a structural phase transition at 64 K, where the magnetic susceptibility was drastically dropped on cooling. The copper-radical magnetic couplings were characterized as ferro- and antiferromagnetic for the high- and low-temperature phases, respectively. The crystallographic analysis clarified that the nitroxide oxygen atom remained at the equatorial position throughout the single-crystal-to-single-crystal phase transition, while the previously known spin-transition-like copper-radical compounds showed conversion of the roles of equatorial and axial positions. The orthogonal arrangement between the copper dσ and nitroxide π* orbitals is essential for the ferromagnetic coupling, and a slight dislocation of the radical oxygen atom from the chelate plane leads to violation of the orthogonal orbital arrangement, giving a practically diamagnetic low-temperature phase.

Original languageEnglish
Pages (from-to)11516-11524
Number of pages9
JournalJournal of the American Chemical Society
Volume132
Issue number33
DOIs
Publication statusPublished - 2010 Aug 25
Externally publishedYes

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Ferro-and antiferromagnetic coupling switch accompanied by twist deformation around the copper(II) and nitroxide coordination bond'. Together they form a unique fingerprint.

Cite this