Ferroelectric domain structures around the morphotropic phase boundary of the piezoelectric material Pb Zr1-x Tix O3

Toshihiro Asada, Yasumasa Koyama

    Research output: Contribution to journalArticle

    63 Citations (Scopus)

    Abstract

    In the simple perovskite oxide Pb Zr1-x Tix O3 (PZT), an excellent piezoelectric response was obtained in the vicinity of a morphotropic phase boundary (MPB) between the ferroelectric monoclinic (FM) and rhombohedral (FR) phases. In order to understand the origin of this exceptional response, we have used transmission electron microscopy to investigate the detailed features of the ferroelectric domain structures near the MPB in PZT. Two types of domain structures, domains I and II, existed at room temperature in the FM side of the MPB, while the room-temperature structure in the FR side was confirmed to be a usual structure consisting of the 109° and 180° domain boundaries. The notable feature of these domain structures is that each domain in both the domain II and the FR domain structure near the MPB can be identified as an aggregation of nanometer domains with an average size of about 10 nm. In order to clarify the formation of these domain structures, we conducted in situ observations from room temperature to about 800 K. The results revealed that the usual FR domain structure at room temperature was produced by a conversion from a nanometer-sized domain structure consisting of nanometer ferroelectric domains, which formed just below the Curie temperature. The characteristic feature of the nanometer-sized structure is that nanometer regions with the [001] or [00 1̄] polarization component were uniformly distributed in a large [110]-component area. Because spatial average of 001 components must be zero in a large [110]-component area, the nanometer-sized domain structure may have an average [110] polarization with average orthorhombic symmetry. In the FM side, on the other hand, a new banded domain structure appeared in the interior of each domain of domain II on heating at a temperature TT, but basically disappeared at TT on subsequent cooling. This reversible change in the banded structure indicates that a phase transition occurs at TT. Because the banded domain structure appeared in the heating process, the higher- and lower-temperature phases may have triclinic and monoclinic symmetries, respectively. In addition, a similar banded domain structure was observed in a poled sample. On the basis of the existence of this feature, we believe that the presence of the triclinic phase near the MPB may be the crucial factor responsible for the excellent piezoelectric response in PZT.

    Original languageEnglish
    Article number214111
    JournalPhysical Review B - Condensed Matter and Materials Physics
    Volume75
    Issue number21
    DOIs
    Publication statusPublished - 2007 Jun 20

    Fingerprint

    Piezoelectric materials
    Phase boundaries
    Ferroelectric materials
    Temperature
    Polarization
    Industrial heating
    Curie temperature
    Perovskite
    Oxides
    frequency modulation
    Agglomeration
    Phase transitions
    Transmission electron microscopy
    Cooling
    room temperature
    Heating
    heating

    ASJC Scopus subject areas

    • Condensed Matter Physics

    Cite this

    @article{22f04a66b76e4c7cb94cc057a2879f06,
    title = "Ferroelectric domain structures around the morphotropic phase boundary of the piezoelectric material Pb Zr1-x Tix O3",
    abstract = "In the simple perovskite oxide Pb Zr1-x Tix O3 (PZT), an excellent piezoelectric response was obtained in the vicinity of a morphotropic phase boundary (MPB) between the ferroelectric monoclinic (FM) and rhombohedral (FR) phases. In order to understand the origin of this exceptional response, we have used transmission electron microscopy to investigate the detailed features of the ferroelectric domain structures near the MPB in PZT. Two types of domain structures, domains I and II, existed at room temperature in the FM side of the MPB, while the room-temperature structure in the FR side was confirmed to be a usual structure consisting of the 109° and 180° domain boundaries. The notable feature of these domain structures is that each domain in both the domain II and the FR domain structure near the MPB can be identified as an aggregation of nanometer domains with an average size of about 10 nm. In order to clarify the formation of these domain structures, we conducted in situ observations from room temperature to about 800 K. The results revealed that the usual FR domain structure at room temperature was produced by a conversion from a nanometer-sized domain structure consisting of nanometer ferroelectric domains, which formed just below the Curie temperature. The characteristic feature of the nanometer-sized structure is that nanometer regions with the [001] or [00 1̄] polarization component were uniformly distributed in a large [110]-component area. Because spatial average of 001 components must be zero in a large [110]-component area, the nanometer-sized domain structure may have an average [110] polarization with average orthorhombic symmetry. In the FM side, on the other hand, a new banded domain structure appeared in the interior of each domain of domain II on heating at a temperature TT, but basically disappeared at TT on subsequent cooling. This reversible change in the banded structure indicates that a phase transition occurs at TT. Because the banded domain structure appeared in the heating process, the higher- and lower-temperature phases may have triclinic and monoclinic symmetries, respectively. In addition, a similar banded domain structure was observed in a poled sample. On the basis of the existence of this feature, we believe that the presence of the triclinic phase near the MPB may be the crucial factor responsible for the excellent piezoelectric response in PZT.",
    author = "Toshihiro Asada and Yasumasa Koyama",
    year = "2007",
    month = "6",
    day = "20",
    doi = "10.1103/PhysRevB.75.214111",
    language = "English",
    volume = "75",
    journal = "Physical Review B-Condensed Matter",
    issn = "0163-1829",
    publisher = "American Institute of Physics Publising LLC",
    number = "21",

    }

    TY - JOUR

    T1 - Ferroelectric domain structures around the morphotropic phase boundary of the piezoelectric material Pb Zr1-x Tix O3

    AU - Asada, Toshihiro

    AU - Koyama, Yasumasa

    PY - 2007/6/20

    Y1 - 2007/6/20

    N2 - In the simple perovskite oxide Pb Zr1-x Tix O3 (PZT), an excellent piezoelectric response was obtained in the vicinity of a morphotropic phase boundary (MPB) between the ferroelectric monoclinic (FM) and rhombohedral (FR) phases. In order to understand the origin of this exceptional response, we have used transmission electron microscopy to investigate the detailed features of the ferroelectric domain structures near the MPB in PZT. Two types of domain structures, domains I and II, existed at room temperature in the FM side of the MPB, while the room-temperature structure in the FR side was confirmed to be a usual structure consisting of the 109° and 180° domain boundaries. The notable feature of these domain structures is that each domain in both the domain II and the FR domain structure near the MPB can be identified as an aggregation of nanometer domains with an average size of about 10 nm. In order to clarify the formation of these domain structures, we conducted in situ observations from room temperature to about 800 K. The results revealed that the usual FR domain structure at room temperature was produced by a conversion from a nanometer-sized domain structure consisting of nanometer ferroelectric domains, which formed just below the Curie temperature. The characteristic feature of the nanometer-sized structure is that nanometer regions with the [001] or [00 1̄] polarization component were uniformly distributed in a large [110]-component area. Because spatial average of 001 components must be zero in a large [110]-component area, the nanometer-sized domain structure may have an average [110] polarization with average orthorhombic symmetry. In the FM side, on the other hand, a new banded domain structure appeared in the interior of each domain of domain II on heating at a temperature TT, but basically disappeared at TT on subsequent cooling. This reversible change in the banded structure indicates that a phase transition occurs at TT. Because the banded domain structure appeared in the heating process, the higher- and lower-temperature phases may have triclinic and monoclinic symmetries, respectively. In addition, a similar banded domain structure was observed in a poled sample. On the basis of the existence of this feature, we believe that the presence of the triclinic phase near the MPB may be the crucial factor responsible for the excellent piezoelectric response in PZT.

    AB - In the simple perovskite oxide Pb Zr1-x Tix O3 (PZT), an excellent piezoelectric response was obtained in the vicinity of a morphotropic phase boundary (MPB) between the ferroelectric monoclinic (FM) and rhombohedral (FR) phases. In order to understand the origin of this exceptional response, we have used transmission electron microscopy to investigate the detailed features of the ferroelectric domain structures near the MPB in PZT. Two types of domain structures, domains I and II, existed at room temperature in the FM side of the MPB, while the room-temperature structure in the FR side was confirmed to be a usual structure consisting of the 109° and 180° domain boundaries. The notable feature of these domain structures is that each domain in both the domain II and the FR domain structure near the MPB can be identified as an aggregation of nanometer domains with an average size of about 10 nm. In order to clarify the formation of these domain structures, we conducted in situ observations from room temperature to about 800 K. The results revealed that the usual FR domain structure at room temperature was produced by a conversion from a nanometer-sized domain structure consisting of nanometer ferroelectric domains, which formed just below the Curie temperature. The characteristic feature of the nanometer-sized structure is that nanometer regions with the [001] or [00 1̄] polarization component were uniformly distributed in a large [110]-component area. Because spatial average of 001 components must be zero in a large [110]-component area, the nanometer-sized domain structure may have an average [110] polarization with average orthorhombic symmetry. In the FM side, on the other hand, a new banded domain structure appeared in the interior of each domain of domain II on heating at a temperature TT, but basically disappeared at TT on subsequent cooling. This reversible change in the banded structure indicates that a phase transition occurs at TT. Because the banded domain structure appeared in the heating process, the higher- and lower-temperature phases may have triclinic and monoclinic symmetries, respectively. In addition, a similar banded domain structure was observed in a poled sample. On the basis of the existence of this feature, we believe that the presence of the triclinic phase near the MPB may be the crucial factor responsible for the excellent piezoelectric response in PZT.

    UR - http://www.scopus.com/inward/record.url?scp=34347336466&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=34347336466&partnerID=8YFLogxK

    U2 - 10.1103/PhysRevB.75.214111

    DO - 10.1103/PhysRevB.75.214111

    M3 - Article

    VL - 75

    JO - Physical Review B-Condensed Matter

    JF - Physical Review B-Condensed Matter

    SN - 0163-1829

    IS - 21

    M1 - 214111

    ER -