TY - GEN
T1 - Firing test of a hypersonic turbojet engine installed on a flight test vehicle
AU - Taguchi, Hideyuki
AU - Harada, Kenya
AU - Kobayashi, Hiroaki
AU - Kojima, Takayuki
AU - Hongoh, Motoyuki
AU - Masaki, Daisaku
AU - Sawai, Shujiro
AU - Maru, Yusuke
AU - Sato, Tetsuya
PY - 2009/12/1
Y1 - 2009/12/1
N2 - Hypersonic turbojet engine with pre-cooling system is tested under sea level static condition. The engine is installed on a flight test vehicle, which will fly at Mach 2 speed by a free fall experiment from a stratospheric balloon. Liquid hydrogen fuel and gas hydrogen fuel is supplied to the engine from a tank and cylinders installed in the vehicle. Designated operation of major components of the engine is confirmed. Corrected rotation speed, corrected air flow rate and pressure ratio of the compressor is raised by pre-cooling with liquid hydrogen fuel. Corrected air flow rate and pressure ratio at the pre-cooling operation is reduced comparing from that without pre-cooling on the same corrected rotation speed. There is a deep temperature distortion at the inlet of the compressor and it may cause the performance reduction. Large amount of liquid hydrogen is supplied to the pre-cooler in order to obtain enough pre-cooling performance for Mach 5 flight. Then, fuel rich combustion at the after-burner is adopted. Cowl part of variable geometry nozzle is made with C/C composite material and it has no damage after the combustion test. Operation of the core engine by liquid hydrogen is attained by using a control valve with small effective diameter.
AB - Hypersonic turbojet engine with pre-cooling system is tested under sea level static condition. The engine is installed on a flight test vehicle, which will fly at Mach 2 speed by a free fall experiment from a stratospheric balloon. Liquid hydrogen fuel and gas hydrogen fuel is supplied to the engine from a tank and cylinders installed in the vehicle. Designated operation of major components of the engine is confirmed. Corrected rotation speed, corrected air flow rate and pressure ratio of the compressor is raised by pre-cooling with liquid hydrogen fuel. Corrected air flow rate and pressure ratio at the pre-cooling operation is reduced comparing from that without pre-cooling on the same corrected rotation speed. There is a deep temperature distortion at the inlet of the compressor and it may cause the performance reduction. Large amount of liquid hydrogen is supplied to the pre-cooler in order to obtain enough pre-cooling performance for Mach 5 flight. Then, fuel rich combustion at the after-burner is adopted. Cowl part of variable geometry nozzle is made with C/C composite material and it has no damage after the combustion test. Operation of the core engine by liquid hydrogen is attained by using a control valve with small effective diameter.
UR - http://www.scopus.com/inward/record.url?scp=77958614889&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77958614889&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:77958614889
SN - 9781600867408
T3 - 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference
BT - 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference
T2 - 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference
Y2 - 19 October 2009 through 22 October 2009
ER -