Fitting rotation curves of galaxies by de Rham-Gabadadze-Tolley massive gravity

Sirachak Panpanich, Piyabut Burikham

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

We investigate the effects of massive gravitons on the rotation curves of the Milky Way, spiral galaxies, and low surface brightness (LSB) galaxies. Using a simple de Rham, Gabadadze, and Tolley (dRGT) massive gravity model, we find a static spherically symmetric metric and a modified Tolman-Oppenheimer-Volkoff (TOV) equation. The dRGT nonlinear graviton interactions generate density and pressures, which behave like dark energy that can mimic the gravitational effects of a dark matter halo. We find that rotation curves of most galaxies can be fitted well by a single constant-gravity parameter γ∼mg2C∼10-28 m-1 corresponding to the graviton mass in the range mg∼10-21-10-30 eV depending on the choice of the fiducial metric parameter C∼1-1018 m. Fitting the rotation curve of the Milky Way puts a strong constraint on the Yukawa-type coupling of the massive graviton exchange as a result of the shell effects.

Original languageEnglish
Article number064008
JournalPhysical Review D
Volume98
Issue number6
DOIs
Publication statusPublished - 2018 Sept 11
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Fitting rotation curves of galaxies by de Rham-Gabadadze-Tolley massive gravity'. Together they form a unique fingerprint.

Cite this