Flow distribution and pressure of air due to ionic wind in pin-to-plate corona discharge system

    Research output: Contribution to journalArticle

    41 Citations (Scopus)

    Abstract

    An electrohydrodynamic investigation has been carried out in a pin-to-plate gas discharge system to clarify the mechanism of repulsive force generation between a pin and plate electrode at corona discharge. Numerical calculations have been conducted in two steps. First, the axi-cylindrical static corona discharge field was calculated with the finite-element method to deduce the Coulombic body force ρ E applied to the air, where ρ is the charge density and E is the electric field, and then the induced ionic wind was calculated with the finite differential method. The calculated pressure distribution on the plate electrode was on the order of 10 Pa which was in good agreement with the measured pressure distribution. The calculated air velocity at the center was several m/s and was confirmed by a time-of-flight experiment and the velocity distribution near the pin electrode also agreed with measurements using a laser Doppler velocimeter. Pressure and wind velocity were increased at high-applied voltage. These results confirm that the ionic wind is the cause of the repulsive force to the pin electrode at the corona discharge.

    Original languageEnglish
    Pages (from-to)400-407
    Number of pages8
    JournalJournal of Electrostatics
    Volume64
    Issue number6
    DOIs
    Publication statusPublished - 2006 Jun

      Fingerprint

    Keywords

    • Corona discharge
    • Electrohydrodynamics
    • Ionic wind

    ASJC Scopus subject areas

    • Electrical and Electronic Engineering
    • Materials Chemistry
    • Materials Science(all)
    • Physics and Astronomy(all)
    • Surfaces and Interfaces

    Cite this