Abstract
We discuss the non-equilibrium fluctuation problem, which corresponds to the hydrodynamic limit established by Funaki and Sasada (2010) [9], for the dynamics of two-dimensional Young diagrams associated with the uniform and restricted uniform statistics, and derive linear stochastic partial differential equations in the limit. We show that their invariant measures are identical to the Gaussian measures which appear in the fluctuation limits in the static situations.
Original language | English |
---|---|
Pages (from-to) | 1229-1275 |
Number of pages | 47 |
Journal | Stochastic Processes and their Applications |
Volume | 123 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2013 |
Externally published | Yes |
Keywords
- Exclusion process
- Fluctuation
- Hydrodynamic limit
- Young diagram
- Zero-range process
ASJC Scopus subject areas
- Statistics and Probability
- Modelling and Simulation
- Applied Mathematics