Fluid volume modeling from sparse multi-view images by appearance transfer

Makoto Okabe, Yoshinori Dobashi, Ken Anjyo, Rikio Onai

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

We propose a method of three-dimensional (3D) modeling of volumetric fluid phenomena from sparse multi-view images (e.g., only a single-view input or a pair of front- and side-view inputs). The volume determined from such sparse inputs using previous methods appears blurry and unnatural with novel views; however, our method preserves the appearance of novel viewing angles by transferring the appearance information from input images to novel viewing angles. For appearance information, we use histograms of image intensities and steerable coefficients. We formulate the volume modeling as an energy minimization problem with statistical hard constraints, which is solved using an expectation maximization (EM)-like iterative algorithm. Our algorithm begins with a rough estimate of the initial volume modeled from the input images, followed by an iterative process whereby we first render the images of the current volume with novel viewing angles. Then, we modify the rendered images by transferring the appearance information from the input images, and we thereafter model the improved volume based on the modified images. We iterate these operations until the volume converges. We demonstrate our method successfully provides natural-looking volume sequences of fluids (i.e., fire, smoke, explosions, and a water splash) from sparse multiview videos. To create production-ready fluid animations, we further propose a method of rendering and editing fluids using a commercially available fluid simulator.

Original languageEnglish
Article number93
JournalACM Transactions on Graphics
Volume34
Issue number4
DOIs
Publication statusPublished - 2015 Jul 27
Externally publishedYes

Keywords

  • Image-based modeling
  • Natural phenomena animation
  • Single-view modeling
  • Texture analysis/synthesis
  • Volume modeling

ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'Fluid volume modeling from sparse multi-view images by appearance transfer'. Together they form a unique fingerprint.

  • Cite this