Gamma oscillations of spiking neural populations enhance signal discrimination

Naoki Masuda*, Brent Doiron

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)

Abstract

Selective attention is an important filter for complex environments where distractions compete with signals. Attention increases both the gamma-band power of cortical local field potentials and the spike-field coherence within the receptive field of an attended object. However, the mechanisms by which gamma-band activity enhances, if at all, the encoding of input signals are not well understood. We propose that gamma oscillations induce binomial-like spike-count statistics across noisy neural populations. Using simplified models of spiking neurons, we show how the discrimination of static signals based on the population spike-count response is improved with gamma induced binomial statistics. These results give an important mechanistic link between the neural correlates of attention and the discrimination tasks where attention is known to enhance performance. Further, they show how a rhythmicity of spike responses can enhance coding schemes that are not temporally sensitive.

Original languageEnglish
Pages (from-to)2348-2355
Number of pages8
JournalPLoS Computational Biology
Volume3
Issue number11
DOIs
Publication statusPublished - 2007 Nov
Externally publishedYes

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Modelling and Simulation
  • Ecology
  • Molecular Biology
  • Genetics
  • Cellular and Molecular Neuroscience
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Gamma oscillations of spiking neural populations enhance signal discrimination'. Together they form a unique fingerprint.

Cite this