GAN Using Capsule Network for Discriminator and Generator

Kanako Marusaki, Hiroshi Watanabe

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we propose Capsule GAN, which incorporates the capsule network into the structure of both discriminator and generator of Generative Adversarial Networks (GAN). Many CNN-based GANs have been studied. Among them, Deep Convolutional GAN (DCGAN) has been attracting particular attention. Other examples include convolutional GAN, auxiliary classifier GAN, Wasserstein GAN (WGAN) which uses Wasserstein distance to prevent mode collapse during the learning process, and Wasserstein GAN-gp (WGAN-gp). However, image generation by GAN is not stable and prone to mode collapse. As a result, the quality of the generated images is not satisfactory. It is expected to generate better quality images by incorporating a capsule network, which compensates for the shortcomings of CNN, into the structure of GAN. Therefore, in this paper, we propose two approaches to generate images with better quality by incorporating the capsule network into GAN. The experimental results show that the proposed method is superior to the conventional method.

Original languageEnglish
Title of host publication2021 IEEE 10th Global Conference on Consumer Electronics, GCCE 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages647-650
Number of pages4
ISBN (Electronic)9781665436762
DOIs
Publication statusPublished - 2021
Event10th IEEE Global Conference on Consumer Electronics, GCCE 2021 - Kyoto, Japan
Duration: 2021 Oct 122021 Oct 15

Publication series

Name2021 IEEE 10th Global Conference on Consumer Electronics, GCCE 2021

Conference

Conference10th IEEE Global Conference on Consumer Electronics, GCCE 2021
Country/TerritoryJapan
CityKyoto
Period21/10/1221/10/15

Keywords

  • capsule network
  • cnn
  • deep learning
  • gan

ASJC Scopus subject areas

  • Computer Science Applications
  • Signal Processing
  • Biomedical Engineering
  • Electrical and Electronic Engineering
  • Media Technology
  • Instrumentation

Fingerprint

Dive into the research topics of 'GAN Using Capsule Network for Discriminator and Generator'. Together they form a unique fingerprint.

Cite this