Gelfand-Zetlin basis for Uq(gl(N+1)) modules

Kimio Ueno, Tadayoshi Takebayashi, Youichi Shibukawa

    Research output: Contribution to journalArticle

    35 Citations (Scopus)

    Abstract

    The Gelfand-Zetlin basis of Uq(gl(N+1)) modules is constructed via the lowering operator method.

    Original languageEnglish
    Pages (from-to)215-221
    Number of pages7
    JournalLetters in Mathematical Physics
    Volume18
    Issue number3
    DOIs
    Publication statusPublished - 1989 Oct

    Fingerprint

    modules
    operators
    Module
    Operator

    Keywords

    • AMS subject classification (1980): 81-XX

    ASJC Scopus subject areas

    • Statistical and Nonlinear Physics
    • Physics and Astronomy(all)
    • Mathematical Physics

    Cite this

    Gelfand-Zetlin basis for Uq(gl(N+1)) modules. / Ueno, Kimio; Takebayashi, Tadayoshi; Shibukawa, Youichi.

    In: Letters in Mathematical Physics, Vol. 18, No. 3, 10.1989, p. 215-221.

    Research output: Contribution to journalArticle

    Ueno, Kimio ; Takebayashi, Tadayoshi ; Shibukawa, Youichi. / Gelfand-Zetlin basis for Uq(gl(N+1)) modules. In: Letters in Mathematical Physics. 1989 ; Vol. 18, No. 3. pp. 215-221.
    @article{c63ea615fea443a0a6695707214d3883,
    title = "Gelfand-Zetlin basis for Uq(gl(N+1)) modules",
    abstract = "The Gelfand-Zetlin basis of Uq(gl(N+1)) modules is constructed via the lowering operator method.",
    keywords = "AMS subject classification (1980): 81-XX",
    author = "Kimio Ueno and Tadayoshi Takebayashi and Youichi Shibukawa",
    year = "1989",
    month = "10",
    doi = "10.1007/BF00399970",
    language = "English",
    volume = "18",
    pages = "215--221",
    journal = "Letters in Mathematical Physics",
    issn = "0377-9017",
    publisher = "Springer Netherlands",
    number = "3",

    }

    TY - JOUR

    T1 - Gelfand-Zetlin basis for Uq(gl(N+1)) modules

    AU - Ueno, Kimio

    AU - Takebayashi, Tadayoshi

    AU - Shibukawa, Youichi

    PY - 1989/10

    Y1 - 1989/10

    N2 - The Gelfand-Zetlin basis of Uq(gl(N+1)) modules is constructed via the lowering operator method.

    AB - The Gelfand-Zetlin basis of Uq(gl(N+1)) modules is constructed via the lowering operator method.

    KW - AMS subject classification (1980): 81-XX

    UR - http://www.scopus.com/inward/record.url?scp=0001276898&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=0001276898&partnerID=8YFLogxK

    U2 - 10.1007/BF00399970

    DO - 10.1007/BF00399970

    M3 - Article

    AN - SCOPUS:0001276898

    VL - 18

    SP - 215

    EP - 221

    JO - Letters in Mathematical Physics

    JF - Letters in Mathematical Physics

    SN - 0377-9017

    IS - 3

    ER -