TY - JOUR

T1 - Generators of rank 2 cluster algebras of affine types via linearization of seed mutations

AU - Nobe, Atsushi

N1 - Funding Information:
This work was partially supported by JSPS KAKENHI Grant No. 26400107. The author would like to thank the anonymous referees for their careful reading of the manuscript and their insightful comments and suggestions.
Publisher Copyright:
© 2019 Author(s).

PY - 2019/7/1

Y1 - 2019/7/1

N2 - From the viewpoint of integrable systems on algebraic curves, we discuss linearization of birational maps arising from the seed mutations of types A1(1) and A2(2), which enables us to construct the set of all cluster variables generating the corresponding cluster algebras. These birational maps induce discrete integrable systems on algebraic curves referred to as the types of the seed mutations from which they are arising. The invariant curve of type A1(1) is a conic, while the one of type A2(2) is a singular quartic curve. By applying the blowing-up of the singular quartic curve, the discrete integrable system of type A2(2) on the singular curve is transformed into the one on the conic, the invariant curve of type A1(1). We show that both the discrete integrable systems of types A1(1) and A2(2) commute with each other on the conic, the common invariant curve. We moreover show that these integrable systems are simultaneously linearized by means of the conserved quantities and their general solutions are obtained. By using the general solutions, we construct the sets of all cluster variables generating the cluster algebras of types A1(1) and A2(2).

AB - From the viewpoint of integrable systems on algebraic curves, we discuss linearization of birational maps arising from the seed mutations of types A1(1) and A2(2), which enables us to construct the set of all cluster variables generating the corresponding cluster algebras. These birational maps induce discrete integrable systems on algebraic curves referred to as the types of the seed mutations from which they are arising. The invariant curve of type A1(1) is a conic, while the one of type A2(2) is a singular quartic curve. By applying the blowing-up of the singular quartic curve, the discrete integrable system of type A2(2) on the singular curve is transformed into the one on the conic, the invariant curve of type A1(1). We show that both the discrete integrable systems of types A1(1) and A2(2) commute with each other on the conic, the common invariant curve. We moreover show that these integrable systems are simultaneously linearized by means of the conserved quantities and their general solutions are obtained. By using the general solutions, we construct the sets of all cluster variables generating the cluster algebras of types A1(1) and A2(2).

UR - http://www.scopus.com/inward/record.url?scp=85069928918&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85069928918&partnerID=8YFLogxK

U2 - 10.1063/1.5053429

DO - 10.1063/1.5053429

M3 - Article

AN - SCOPUS:85069928918

VL - 60

JO - Journal of Mathematical Physics

JF - Journal of Mathematical Physics

SN - 0022-2488

IS - 7

M1 - 072702

ER -