GENERIC SPARSE GRAPH BASED CONVOLUTIONAL NETWORKS FOR FACE RECOGNITION

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Several graph-based methods have been proposed to perform face recognition, such as elastic graph matching, etc. These methods take advantage of the fact that the face has a graph structure. However, these methods are weaker than the CNNs. With the development of graph convolutional neural networks (GCNNs), we can reconsider the benefits of identifying the graph structure. In this paper, a face image is modeled as a sparse graph. The major challenge is how to estimate the sparse graph. Usually, the sparse graph is based on some prior clustering methods, such as k-nn, etc., that will cause the learned graph to be closer to the prior graph. Another problem is that the regularization parameters are difficult to accurately estimate. This paper presents a generic sparse graph based convolutional networks (GSgCNs). We have three advantages: 1) the regularization parameters are not estimated in the generic sparse graph modeling, 2) non-prior and 3) each sparse subgraph is represented as a connected graph of the most adjacent - relevant vertices. Because the generic sparse graph representation is non-convex, we implement the projected gradient descent algorithm with structured sparse representation. Experimental results demonstrate that the GSgCNs have good performance compared with some state-of-the-art methods.

Original languageEnglish
Title of host publication2021 IEEE International Conference on Image Processing, ICIP 2021 - Proceedings
PublisherIEEE Computer Society
Pages1589-1593
Number of pages5
ISBN (Electronic)9781665441155
DOIs
Publication statusPublished - 2021
Event2021 IEEE International Conference on Image Processing, ICIP 2021 - Anchorage, United States
Duration: 2021 Sep 192021 Sep 22

Publication series

NameProceedings - International Conference on Image Processing, ICIP
Volume2021-September
ISSN (Print)1522-4880

Conference

Conference2021 IEEE International Conference on Image Processing, ICIP 2021
Country/TerritoryUnited States
CityAnchorage
Period21/9/1921/9/22

Keywords

  • Graph convolutional network
  • Sparse graph
  • Structured sparse representation

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition
  • Signal Processing

Fingerprint

Dive into the research topics of 'GENERIC SPARSE GRAPH BASED CONVOLUTIONAL NETWORKS FOR FACE RECOGNITION'. Together they form a unique fingerprint.

Cite this