Giga-hertz piezoelectric epitaxial PZT transducer for the application of fingerprint imaging

Yusuke Sato, Takahiko Yanagitani

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The fingerprint sensor based on pMUTs was reported [1]. Spatial resolution of the image depends on the size of the acoustic source when a plane wave is used. If the size of the acoustic source is smaller, piezoelectric films with high dielectric constant are required. In this study, in order to obtain small acoustic source, we proposed Pb(Zrx Th-x)O3 (PZT) epitaxial transducers with high dielectric constant. PbTiO3 (PTO) epitaxial films were grown on conductive La-SrTiO3 (STO) substrate by RF magnetron sputtering. Longitudinal wave conversion loss of PTO transducers was measured by a network analyzer. The thermoplastic elastomer was used instead of real fingerprint. We confirmed that conversion loss of piezoelectric film/substrate structure was increased by contacting the elastomer due the change of reflection coefficient of the substrate bottom/elastomer interface. Minimum conversion loss images were obtained by mechanically scanning the soft probe on the transducer surface. We achieved the detection of the fingerprint phantom based on the elastomer in the GHz.

Original languageEnglish
Title of host publicationIUS 2020 - International Ultrasonics Symposium, Proceedings
PublisherIEEE Computer Society
ISBN (Electronic)9781728154480
DOIs
Publication statusPublished - 2020 Sep 7
Event2020 IEEE International Ultrasonics Symposium, IUS 2020 - Las Vegas, United States
Duration: 2020 Sep 72020 Sep 11

Publication series

NameIEEE International Ultrasonics Symposium, IUS
Volume2020-September
ISSN (Print)1948-5719
ISSN (Electronic)1948-5727

Conference

Conference2020 IEEE International Ultrasonics Symposium, IUS 2020
CountryUnited States
CityLas Vegas
Period20/9/720/9/11

Keywords

  • Fingerprint imaging
  • Mechanical scanning
  • PZT

ASJC Scopus subject areas

  • Acoustics and Ultrasonics

Fingerprint Dive into the research topics of 'Giga-hertz piezoelectric epitaxial PZT transducer for the application of fingerprint imaging'. Together they form a unique fingerprint.

Cite this