TY - JOUR
T1 - Global mining risk footprint of critical metals necessary for low-carbon technologies
T2 - The case of neodymium, cobalt, and platinum in Japan
AU - Nansai, Keisuke
AU - Nakajima, Kenichi
AU - Kagawa, Shigemi
AU - Kondo, Yasushi
AU - Shigetomi, Yosuke
AU - Suh, Sangwon
N1 - Publisher Copyright:
© 2015 American Chemical Society.
PY - 2015/2/17
Y1 - 2015/2/17
N2 - Meeting the 2-degree global warming target requires wide adoption of low-carbon energy technologies. Many such technologies rely on the use of precious metals, however, increasing the dependence of national economies on these resources. Among such metals, those with supply security concerns are referred to as critical metals. Using the Policy Potential Index developed by the Fraser Institute, this study developed a new footprint indicator, the mining risk footprint (MRF), to quantify the mining risk directly and indirectly affecting a national economy through its consumption of critical metals. We formulated the MRF as a product of the material footprint (MF) of the consuming country and the mining risks of the countries where the materials are mined. A case study was conducted for the 2005 Japanese economy to determine the MF and MRF for three critical metals essential for emerging energy technologies: neodymium, cobalt and platinum. The results indicate that in 2005 the MFs generated by Japanese domestic final demand, that is, the consumption-based metal output of Japan, were 1.0 × 103 t for neodymium, 9.4 × 103 t for cobalt, and 2.1 × 10 t for platinum. Export demand contributes most to the MF, accounting for 3.0 × 103 t, 1.3 × 105 t, and 3.1 × 10 t, respectively. The MRFs of Japanese total final demand (domestic plus export) were calculated to be 1.7 × 10 points for neodymium, 4.5 × 10-2 points for cobalt, and 5.6 points for platinum, implying that the Japanese economy is incurring a high mining risk through its use of neodymium. This country's MRFs are all dominated by export demand. The paper concludes by discussing the policy implications and future research directions for measuring the MFs and MRFs of critical metals. For countries poorly endowed with mineral resources, adopting low-carbon energy technologies may imply a shifting of risk from carbon resources to other natural resources, in particular critical metals, and a trade-off between increased mining risk and deployment of such technologies. Our analysis constitutes a first step toward quantifying and managing the risks associated with natural resource mining.
AB - Meeting the 2-degree global warming target requires wide adoption of low-carbon energy technologies. Many such technologies rely on the use of precious metals, however, increasing the dependence of national economies on these resources. Among such metals, those with supply security concerns are referred to as critical metals. Using the Policy Potential Index developed by the Fraser Institute, this study developed a new footprint indicator, the mining risk footprint (MRF), to quantify the mining risk directly and indirectly affecting a national economy through its consumption of critical metals. We formulated the MRF as a product of the material footprint (MF) of the consuming country and the mining risks of the countries where the materials are mined. A case study was conducted for the 2005 Japanese economy to determine the MF and MRF for three critical metals essential for emerging energy technologies: neodymium, cobalt and platinum. The results indicate that in 2005 the MFs generated by Japanese domestic final demand, that is, the consumption-based metal output of Japan, were 1.0 × 103 t for neodymium, 9.4 × 103 t for cobalt, and 2.1 × 10 t for platinum. Export demand contributes most to the MF, accounting for 3.0 × 103 t, 1.3 × 105 t, and 3.1 × 10 t, respectively. The MRFs of Japanese total final demand (domestic plus export) were calculated to be 1.7 × 10 points for neodymium, 4.5 × 10-2 points for cobalt, and 5.6 points for platinum, implying that the Japanese economy is incurring a high mining risk through its use of neodymium. This country's MRFs are all dominated by export demand. The paper concludes by discussing the policy implications and future research directions for measuring the MFs and MRFs of critical metals. For countries poorly endowed with mineral resources, adopting low-carbon energy technologies may imply a shifting of risk from carbon resources to other natural resources, in particular critical metals, and a trade-off between increased mining risk and deployment of such technologies. Our analysis constitutes a first step toward quantifying and managing the risks associated with natural resource mining.
UR - http://www.scopus.com/inward/record.url?scp=84923086486&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84923086486&partnerID=8YFLogxK
U2 - 10.1021/es504255r
DO - 10.1021/es504255r
M3 - Article
C2 - 25622132
AN - SCOPUS:84923086486
SN - 0013-936X
VL - 49
SP - 2022
EP - 2031
JO - Environmental Science & Technology
JF - Environmental Science & Technology
IS - 4
ER -