TY - JOUR
T1 - Halogen substituent effect on the spin-transition temperature in spin-crossover Fe(III) compounds bearing salicylaldehyde 2-pyridyl hydrazone-type ligands and dicarboxylic acids
AU - Nakanishi, Takumi
AU - Okazawa, Atsushi
AU - Sato, Osamu
N1 - Publisher Copyright:
© 2017 by the authors.
PY - 2017/9/1
Y1 - 2017/9/1
N2 - Four Fe(III) spin-crossover (SCO) compounds, [Fe(HL1)2](HCl4TPA) (1-Cl), [Fe(HL1)2](HBr4TPA) (1-Br), [Fe(HL2)2](HCl4TPA) (2-Cl), and [Fe(HL2)2](HBr4TPA) (2-Br) (HL1 = 4-chloro-2-nitro-6-(1-(2-(pyridine-2-yl)hydrazono)ethyl)phenolate; HL2 = 4-bromo-2-nitro-6-(1-(2- (pyridine-2-yl)hydrazono)ethyl)phenolate; HCl4TPA = 2,3,5,6-tetrachloro-4-carboxybenzoate; and HBr4TPA = 2,3,5,6-tetrabromo-4-carboxybenzoate), were synthesized to investigate the halogen substituent change effect in salicylaldehyde 2-pyridyl hydrazone-type ligands and dicarboxylic acids in SCO complexes to the spin-transition temperature. Crystal structure analyses showed that these compounds were isostructural. In addition, a one-dimensional hydrogen-bonded column was formed by the dicarboxylic acid anion and weak hydrogen bonds between the Fe(III) complexes. From Mössbauer spectroscopy and magnetic property measurements, these compounds were confirmed to exhibit gradual SCO. The spin-transition temperature can be shifted by changing the halogen substituent in the salicylaldehyde 2-pyridyl hydrazone-type ligands and dicarboxylic acids without changing the molecular arrangement in the crystal packing.
AB - Four Fe(III) spin-crossover (SCO) compounds, [Fe(HL1)2](HCl4TPA) (1-Cl), [Fe(HL1)2](HBr4TPA) (1-Br), [Fe(HL2)2](HCl4TPA) (2-Cl), and [Fe(HL2)2](HBr4TPA) (2-Br) (HL1 = 4-chloro-2-nitro-6-(1-(2-(pyridine-2-yl)hydrazono)ethyl)phenolate; HL2 = 4-bromo-2-nitro-6-(1-(2- (pyridine-2-yl)hydrazono)ethyl)phenolate; HCl4TPA = 2,3,5,6-tetrachloro-4-carboxybenzoate; and HBr4TPA = 2,3,5,6-tetrabromo-4-carboxybenzoate), were synthesized to investigate the halogen substituent change effect in salicylaldehyde 2-pyridyl hydrazone-type ligands and dicarboxylic acids in SCO complexes to the spin-transition temperature. Crystal structure analyses showed that these compounds were isostructural. In addition, a one-dimensional hydrogen-bonded column was formed by the dicarboxylic acid anion and weak hydrogen bonds between the Fe(III) complexes. From Mössbauer spectroscopy and magnetic property measurements, these compounds were confirmed to exhibit gradual SCO. The spin-transition temperature can be shifted by changing the halogen substituent in the salicylaldehyde 2-pyridyl hydrazone-type ligands and dicarboxylic acids without changing the molecular arrangement in the crystal packing.
KW - Dicarboxylic acid
KW - Hydrazone complex
KW - Spin crossover
UR - http://www.scopus.com/inward/record.url?scp=85045295805&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85045295805&partnerID=8YFLogxK
U2 - 10.3390/inorganics5030053
DO - 10.3390/inorganics5030053
M3 - Article
AN - SCOPUS:85045295805
SN - 2304-6740
VL - 5
JO - Inorganics
JF - Inorganics
IS - 3
M1 - 53
ER -