Heat-kernels and maximal Lp - Lq estimates: The non-autonomous case

Matthias Georg Hieber, Sylvie Monniaux

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

In this paper, we establish maximal Lp-Lq estimates for rum-autonomous parabolic equations of the type u′(t) + A(t)u(t) = f(t), u(0) = 0 under suitable conditions on the kernels of the semigroups generated by the operators -A(t), t ∈ [0, T]. We apply this result on semilinear problems of the form u′(t) + A(t)u(t) = f(t, u(t)), u(0) = 0.

Original languageEnglish
Pages (from-to)467-481
Number of pages15
JournalJournal of Fourier Analysis and Applications
Volume6
Issue number5
Publication statusPublished - 2000
Externally publishedYes

Fingerprint

Lp Estimates
Heat Kernel
Semilinear
Parabolic Equation
Semigroup
kernel
Operator
Form
Hot Temperature

Keywords

  • Heat-kernel estimates
  • Maximal L - L- Regularity
  • Non-autonomous cauchy problem
  • Singular integrals

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics
  • Analysis

Cite this

Heat-kernels and maximal Lp - Lq estimates : The non-autonomous case. / Hieber, Matthias Georg; Monniaux, Sylvie.

In: Journal of Fourier Analysis and Applications, Vol. 6, No. 5, 2000, p. 467-481.

Research output: Contribution to journalArticle

@article{6cf0745e2a914cf2ad544d67d4cf6472,
title = "Heat-kernels and maximal Lp - Lq estimates: The non-autonomous case",
abstract = "In this paper, we establish maximal Lp-Lq estimates for rum-autonomous parabolic equations of the type u′(t) + A(t)u(t) = f(t), u(0) = 0 under suitable conditions on the kernels of the semigroups generated by the operators -A(t), t ∈ [0, T]. We apply this result on semilinear problems of the form u′(t) + A(t)u(t) = f(t, u(t)), u(0) = 0.",
keywords = "Heat-kernel estimates, Maximal L - L- Regularity, Non-autonomous cauchy problem, Singular integrals",
author = "Hieber, {Matthias Georg} and Sylvie Monniaux",
year = "2000",
language = "English",
volume = "6",
pages = "467--481",
journal = "Journal of Fourier Analysis and Applications",
issn = "1069-5869",
publisher = "Birkhause Boston",
number = "5",

}

TY - JOUR

T1 - Heat-kernels and maximal Lp - Lq estimates

T2 - The non-autonomous case

AU - Hieber, Matthias Georg

AU - Monniaux, Sylvie

PY - 2000

Y1 - 2000

N2 - In this paper, we establish maximal Lp-Lq estimates for rum-autonomous parabolic equations of the type u′(t) + A(t)u(t) = f(t), u(0) = 0 under suitable conditions on the kernels of the semigroups generated by the operators -A(t), t ∈ [0, T]. We apply this result on semilinear problems of the form u′(t) + A(t)u(t) = f(t, u(t)), u(0) = 0.

AB - In this paper, we establish maximal Lp-Lq estimates for rum-autonomous parabolic equations of the type u′(t) + A(t)u(t) = f(t), u(0) = 0 under suitable conditions on the kernels of the semigroups generated by the operators -A(t), t ∈ [0, T]. We apply this result on semilinear problems of the form u′(t) + A(t)u(t) = f(t, u(t)), u(0) = 0.

KW - Heat-kernel estimates

KW - Maximal L - L- Regularity

KW - Non-autonomous cauchy problem

KW - Singular integrals

UR - http://www.scopus.com/inward/record.url?scp=34247392750&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34247392750&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:34247392750

VL - 6

SP - 467

EP - 481

JO - Journal of Fourier Analysis and Applications

JF - Journal of Fourier Analysis and Applications

SN - 1069-5869

IS - 5

ER -